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ABSTRACT

The problem of determining optimal estimation and control policies from
noisy measurement data for time-discrete, stochastic, dynamical systems is
considered in this dissertation. The method that is proposed here for the
solution of these problems represents a generalization of the common approach
that is based on the application of linear theory. In applying linear theory, it
is assumed that the state and measurement perturbations of the actual system
relative to an arbitrary system can be described by linear equations. Then,
it is p;)ssible to apply well-known linear techniques to estimate the state
perturbations and to determine the desired control corrections. In this
investigation, terms of higher order than first are retained in describing the
perturbations. The determination of estimation and control policies for the
resulting nonlinear systems is then accomplished within the framework of the
so-called Bayesian approach.

The general solution of the estimation and control problems can be
established if the a posteriori density function p(_}gk/ _z_k) of the state conditioned
upon all past and current measurement data is known. It is not possible to
express this density in a closed-form in most cases, so a principal concern
in this study is with the approximation, rather than the precise determination,
of the p(§k/_z_k). A general procedure for approximating the densities is proposed
and then applied to a specific nonlinear system. For this system, the plant and
measurement noise is assumed to be additive and gaussian. Then, the a
posteriori density is approximated by a truncated Edgeworth expansion that

includes the fourth central moments. Using this form for the approximation,

xXi



recurrence relations for the moments of the distribution are developed.

These equations can be simplified in a straightforward manner to yield several
other approximations. This includes a gaussian approximation that is more
general than the results obtained by first assuming a linear model.

The estimation problem was considered in some detail. Techniques are
suggested that allow the range of applicability of linear theory to be consider-
ably extended. This extension is illustrated by numerical examples in which
the estimates obtained from the standard Kalman filter, modified Kalman
filters, and the nonlinear filters are compared. The proposed modifications
are seen to yield significant improvements in many cases. These results
suggest that for many problems it might be fruitful to explore these and other
modified linear techniques before attempting to apply a nonlinear theory.
However, problems do exist that require the use of nonlinear methods. The
approach suggested here leads to results that are reasonable for use with

digital computers and appears to warrant further investigation.

xii




CHAPTER ONE
GENERAL DISCUSSION AND PROBLEM STATEMENT

The Austrian physicist Ludwig Boltzmann is reputed to have once
remarked that "there is nothing more practical than a good theory". Believing
this aphorism to be a worthy engineering watchword, it is the intent in this
study to investigate the problem of establishing estimation and control policies
for stochastic dynamical systems by considering a general theory, namely, the
so-called Bayesian approach. As with many such pithy statements, one or
more words can be subject to diverse interpretation. In Boltzmann's phrase,
the key word would appear to be "good", and we suggest that for many engineers,
it might be defined in the following, almost circular, manner. A theory is good
if it leads to the understanding and solution, either analytically or numerically,
of practical problems. Thus, after formulating the general problem and theory
in Chapters 1 and 2, considerable emphasis is placed upon the application of the
theory and the development of computational algorithms.

In Section 1.1, the mathematical model and the general problem are
stated and many of the terms and notations that appear throughout the text are
introduced and discussed. Results that have appeared in the literature relative
to the general topic considered in this study are reviewed in Section 1.2. This
discussion can by no means be considered to exhaust the subject. Additional
references appear throughout the text. In the final section of this chapter, the
theory that is proposed here for the solution of the estimation and control prob-
lems is presented. Also, an outline of the contents of Chapters 2 through 8 is

provided.



1.1 THE GENERAL PROBLEM

As has been stated, the problem of determining estimation and control
policies for stochastic dynamical systems is to be considered. Before stating
these problems, several terms need to be defined.

First, it is important to recognize the precise meaning of "stochastic"
as used here. Certainly, it implies the probabilistic nature of the investiga-

tion but, moreover, we use it to imply that the a priori distributions of all

random quantities are completely known. In this sense, we follow Bellman

[1,2] who has suggested that a system be called adaptive when parameters of
the distributions are unknown and must be "learned". This is in contrast to
the case in which a parameter of the dynamical system is unknown but has an
a priori distribution that is completely defined. This example would still be a
stochastic problem, although the parameter must be estimated (or learned).
6n1y N-stage, time-discrete systems are considered in the ensuing dis-
cussion. In general, the state [3] Xy of the dynamical system is assumed to

evolve according to the nonlinear difference equation

x, =§

X, k=1,...,N ()

e SRTR SHETI. SNRY

where the state X, is n-dimensional. The p-dimensional vector u k-1 des-
cribes the control parameters that are to be selected according to a prescribed
control law. At each time, the system is disturbed by the random noise w k-1’

Throughout the discussion, the sequence* w is assumed to have a known

* The notation g_k is used to designate the collection (_qo, agse. »a, ).
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probability density p(ﬂk ) and to be independent from one sampling time to the

next. That is,

PO W) e ®) D B = P P,). .- p()
Sequences having this characteristic shall be referred to as white noise
sequences (not to be confused with white noise processes which have a con-
siderably different character).

The notation that is used follows Fel'dbaum [4~9] and has the disadvan-
tage that the é.rgument of a function serves a dual purpose. It is used to name
the function (as is done above) and is also treated as a variable name (e.g., it
is treated as the variable of integration). The meaning should be clear from
the context.

The initial condition for the state X, is also a random variable with a
known probability density p(}_co) . Note that the probability density is assumed
to exist in this and all other examples. This does not represent a significant
restriction and could be replaced in each instance by the Radon-Nikodym deri-
vative. The X is assumed to be independent of the noise sequences in the
plant and measurements.

The function _f_k in (I) is considered to be known. This relation is fre-
quently referred to as the plant equation and the fixed system that defines _f_k
as the plant.

The behavior of the plant is generally observed imperfectly through the

measurement of quantities z, that are functionally related to the state variables

Z
and which contain random errors. These data are assumed to be described by

the known relation



_z.k = b_k(_)sk’ Y'k) k=0,1,...,N-1 (II)

where z K is a m-dimensional vector. The noise v K 18 supposed to be a mem-
ber of a white noise sequence with known density p(v k).

Equations (I) and (II) constitute the basic mathematical model for the
study. Note that equations that are deemed to be of particular importance shall
be denoted with the Roman numeral as has been done for (I) and (II). Arabic
symbols shall be used for equations having a more secondary nature. The
subscripts E and C will be used for equations that are significant for either the
estimation or the control problem, but not both.

It is now possible to give a more explicit definition of the estimation and
control problems.

ESTIMATION: The estimation problem is essentially concerned with the
determination of the state x Kk from the measurement data gkw. The problem
separates naturally into three subproblems.

1) Filtering: estimate x, from all past and current measurement

k
data k (i.e., Y =0)

2) Prediction: predict x, from past data (i.e., Y <0)

k
3) Smoothing: estimate X K using future data as well as past and
current data (i.e., Y= 0).
All three cases shall be dealt with in the succeeding pages, but the greatest
emphasis is placed upon the filtering problem. In particular, we shall con-
sider the recursive filtering problem in which the estimate X K shall be based

upon X and z

k-1 k’




Because of the presence of noise in the plant and measurement equations,

it is, in general, not possible to determine Xy precisely from the data gk+Y.

Instead, the estimate X k/k+y must be chosen to approximate g(_k in some well-

defined sense. Suppose the error in the estimate is denoted as gk /by and is

defined as

X o - X
=k/k+y =k/k+y “k

The error criteria that is selected generally has the form of E{rp( X, /k +Y)}

where o is positive and spherically symmetric. That is, it is true that

0 = Oy feay) = Py feay)

and such that if

0 <

~(@1) ~(2)
Xy /k+y | = | Ex /ity

then

3@ %@
Xy fery = PE /iy

Examples of error criteria that satisfy these conditions are:

1) Minimum mean-square error.

For this criteria, the estimate is chosen to cause

~

E[';clT X ] = minimum
= k/k+y =k/k+Y ’
2) Minimum absolute deviation.
In this case the estimate is chosen so that

= minimum.



1t is well-known and will be demonstrated in Section 2. 1 that the mean
square error is minimized by choosing _fi_k JkHy to be the mean of the conditional
density p@k/gk-w). It is also known [10] that in the scalar case the minimum
absolute deviation is obtained by choosing the estimate to be the median of
px, /2.

For the scalar case, Sherman [11] has pointed out the following lemma.
LEMMA: For the ¢p defined above and if P is a probability distribution on the
reals which is symmetric and unimodal with mode at the origin so that P(X) =

1 - P (-X) at each continuity point of P and P is convex for X < 0, then

o) dPX) < [o(X - a) dP(X)
for each real a, when the integrals exist; if either integral diverges, the one
on the right does.
This implies that for conditional distributions satisfying the conditions of

the lemma, the estimate for error criteria E[op (z Y)] is the same as for

k/k+
the minimum mean-square error criteria. Thus, estimates based on the latter
criteria can encompass a much larger class then is popularly believed. For

the remainder of this discussion, only mean-square estimates shall be con-

sidered. Thus, the estimates will be selected to minimize

~ _ ~T ~~
An additional criteria for selecting the estimate would be to select
a +
X /k +y as the maximum value of the conditional density function p(x k/ gk Y) .

This is sometimes referred to as the "most probable" estimate and is the mode

of the distribution. Cox [12] has considered this estimate in considerable detail.



It has the disadvantage that there is no natural measure of error to attribute to
the estimate.

CONTROL: The plant (I) is caused to behave in a particular manner through
the selection of the control vectors g_N—l. The rule according to which the u,
are selected at each sampling time (k =0,1,...,N-1) is called the control law
for the system. As was true in the choice of estimates discussed above, the
means of establishing the control law is somewhat arbitrary. In the following,

we shall assume that the control is chosen to minimize the expected value of

the performance index
N

Vi =) W(x,u ) (III )
i=1
The Wi are specified functions of the state and control variables and shall be

required tobe nonnegative and spherically sysmmetric. A familiar example and
one that will be used later is the quadratic index

N
T X T U
VN T 2(51 W E ity W18y
i=1

where the W:( and Wf_l are arbitrary, non-negative definite weighting matrices.

The behavior of the system is observed through the measurement data g_k
so the control law is taken as a function of these data. That is, at each sampl-

ing time t, to < tk st the control is computed according to

N-1’
= k-y
v =4 [z ]
The vy has been included to indicate that the control might be based on

past data only. Physical realizability considerations require that y 2 0 since

the control could not be expected to depend upon fiture measurements.

7



It would appear that a more general control law could be obtained if u,
were allowed to be a random (rather than deterministic) function of the meas-
urement data. Fel'dbaum considered this possibility and found [5] that the
generalization did not provide any benefit in the cases that he considered.
Sworder [13,14] has shown that it is sufficient to consider deterministic con-
trol laws for Bayesian control policies.

The form of the optimal control law for a given system (I) and perform-
ance index (III C) depends upon the nature of the observational information that
is assumed to be available to the controller. The two conditions that are of
greatest interest occur when Y = 0 and when y =k. The former results in a
feedback (or closed-loop) control law, whereas the latter leads to an open-
loop control law. In deterministic problems, there is no difference between
the two types of control.

In open-loop control, the entire control policy is established by the
initial conditions, whether this is represented by X or measurements made
prior to the initiation of control. This can be modified to a policy that has been

referred to as an open-loop feedback control law. In this case, the control

policy is computed anew at each tk by treating tk as the initial time and by
ignoring the fact that new data will be available at later times. Open-loop,
feedback control might be expected to produce a policy that is superior to open-
loop control but inferior to feedback control. Dreyfus [15] demonstrated that
this intuitive idea is valid for a simple stochastic control problem. Katz [16]
shows that the feedback policy provides a lower bound for the value of the

performance index when the systems are time-continuous.




A fourth alternative has been suggested by Simon [17] and has been

called a certainty equivalence control policy. In this case the random variables

are replaced by their unconditional mean values and the problem is treated as
deterministic. This policy has been shown to provide a solution to the stochas-
tic control problem for linear systems containing white noise sequences and with
a quadratic performance index. This situation is discussed in Chapter 3.

The problem of determining feedback control policies is considered in
Chapters 2 and 3.
1.2 PREVIOUS RESULTS

Research into the stochastic control problem has quite naturally taken
two avenues of approach. In the preceding section, the problem has been posed
in terms of a time-discrete system involving difference equations and a finite
number of observation and control times. It could reasonably have been stated
instead in terms of a time-continuous system with a differential equation model
and continuous measurement and control processes. Since dynamical systems
are usually described by differential equations, it could be concluded that this
would be the more natural model. A considerable amount of research effort
has been expended in this area. For a summary, see References 18 or 19.
More recent results than those described in the aforementioned references
have been published by Bucy [20], Bass [21], Mortensen [22], and
Fisher [23]. The first two have dealt with the estimation problem, whereas
Mortensen has presented a very general and mathe matically sophisticated

solution of the control problem. Fisher considered the estimation problem



from the point of view of approximating the a posteriori density function of a

time-continuous system.

There are advantages and disadvantages to both formulations. The

principal disadvantage of the time-discrete model arises from the fact that, as

has already been mentioned, a dynamical system is generally described by a

system of differential equations. In order to obtain the time-discrete model,

it is necessary to reduce the system to the form described by (I) and this

requirement engenders a problem of considerable significance. On the other

hand, it is believed that the formulation presented in Section 1.1 is more

realistic for several reasons.

@
@)

3)

@

Measurement data are usually available only at discrete times.
In many complex systems, the control is determined with the
aid of digital computer so the control is changed at discrete
times.

In the time-continuous case, white noise processes are generally
assumed to act on the plant and measurement process and such
noise is physically unrealizable.

Last, and not least, the general solution of the time-continuous
estimation and control problems yields systems of complicated
partial differential-integral equations that must be solved. The
difficulties inherent in obtaining numerical solutions to practical

problems using this formulation appear to be excessive.

10



When (I) and (II) are linear, the noise is Gaussian, and a minimum mean-
square error criteria and a quadratic performance index are utilized, the
solutions to the estimation and control problem are well-established. There
have been many workers in this area, but many of the better known results have
been attributed to R. E. Kalman [24,25,26]. It was suggested by Kalman and
Koepcke [27] that for linear systems the estimation and control problems
could be considered separately. That is, the estimates can be computed as
though the control is a known function of time and the control law found for the
deterministic problem can be used for the stochastic control law. The control
is computed according to

e = Xy

where Ak describes the deterministic control law, and gk has replaced x

K"
This result has been stated as a "Separation Theorem" and was first proven
independently by Gunckel [28] and by Joseph [29].

For nonlinear systems, an approach that is commonly used in practice
involves the use of linear perturbation techniques [30]. First, a nominal or
reference solution of () is assumed to exist that provides a "good" approxima-
tion to the actual behavior of the system. The approximation is "good" if the

difference 6 x between the nominal and actual states can be accurately described

by a system of linear difference equations
= +T +
0% = A 1%k T k1K1 Pk k-1 ken

and the difference in the measurements 6z K is given by

11



= +v
6z, = HOoxX, "¥y

This approach has yielded many satisfactory results, but several weak-

nesses have become apparent. For example,

(1) There is no easily obtained criteria for judging the validity of the
linear approximations.

(2)  The filter does notbehave satisfactorily when the measurement
noise is small. Pines and Denham [31] have attributed this to the
absence of second order terms in the expansion of the measure-
ment equations.

(3) This procedure lacks generality. It provides little insight into the
techniques for considering more general systems.

It has been suggested by several people that it would be more appropriate

to formulate the problem in terms of the a posteriori density function p()_ck/ _z_k)
In a series of four papers, Fel'dbaum [4 - 7] dealt with the control problem
and derived several basic results. Ho and Lee [32] considered the estimation
problem. Aoki [33] has conducted an extensive investigation of both problems.
These results are contained in his forthcoming book. In an excellent doctoral
dissertation, Sworder [13,14] has considered the control problem using a
game-theoretic formulation. Stratonovich [34] dealt with the a posteriori
density for time-discrete and time-continuous systems.

Knowledge of p(x k/51() theoretically provides the solution to both the

estimation and control problems. The estimates gk and control u, are

required at each sampling instant so it is necessary to know p(x k/ g_k) for

12



every tk. It is not difficult to show (see Chapter 2) that p( gk/gk) evolves

according to the recursion relation

k-1
p(x, /2" )p(z, /X )
b(x, /2 = ———— kK )
p(z, /2" ")

where

k-1

pe, /2 D) = Joe, /2" Io@,/x, ) dx

and

k- -
pz, /2 Y fp@sk/ak 1)p(£k/§k) dx,

The denominator of (IV) does not involve Xy and plays the role of a normalizing
constant.

The general concept of dealing with the a posteriori density is referred

to as the Bayesian approach to estimation and control. Unfortunately, it is not
possible to solve (IV) in closed form for most problems. (The major exception
occurs for linear systems.) Furthermore, the computational requirements
for solving (IV) numerically become astronomically large for almost any non-
trivial problem. Thus, it becomes apparent that approximations must be intro-
duced that will reduce the complexity of the problem without destroying its
character.
1.3 PREVIEW OF COMING ATTRACTIONS

Since one must knpw p( §_k/§_k) before proceeding with the solution of the
estimation and control problems, it is the intention in this investigation to
develop a means of approximating the density. It is believed that a combina-

tion of perturbative and Bayesian techniques will permit the development of a

13 B



theory that is at once more general than the linear theory but more computa~
tionally attractive than the general Bayesian approach. The procedure that is
proposed for achieving this meld is described below.
(1) At each sampling time tk’ nominal valuest for X1 Y q and
W, _pare assumed. Then the f K is expanded in a Taylor Series.

* *
The measurement equation }-l-k is expanded about f e &k Uk

\_N_’;{_ N and v o

(2) A form for p()gk/gk) must be assumed. This form is required to
be true for all k.

(3) The a priori statistics for the plant and measurement noise and
the expansions of f

and h, are introduced into (IV). Only those

k k

terms are retained that yield the desired form for p(§k/ _z_k)

The application of this procedure to a system leads to several questions

concerning the resulting approximation.

(1) Does the approximation describe p@k/ _z_k) accurately enough to
have confidence in the validity of the estimation and control policies
that are subsequently derived?

(2) Does the approximation lead to estimation and control policies
that provide a significant improvement over linear policies?

A question that is related to the preceding one can be phrased in the

following manner.

t nominal values are denoted by the superscript *.
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(3) Can special techniques be developed that extend the range of
applicability of linear theory and thereby eliminate the need for
nonlinear considerations in many problems?

In this study, several specific approximations are developed. Then,
these questions are considered by examining the estimates of the state of a
dynamical system that are obtained from the approximations. This is accom~
plished through digital simulation.

In Chapter 2, the general Bayesian approach is discussed. The solution
of the minimum mean-square estimation problem is shown to be the conditional
mean. Conditions that the control must satisfy for the performance index (III C)
to be minimized are derived in terms of the a posteriori density. Then,
equations which describe the a posteriori density p@k/gk+y) (for any integer Y)
are derived. These results have appeared [33, 14,32, 35] before in the litera-
ture. In addition, the relations describing the p(§k/_z_k+Y) are rewritten in
terms of characteristic functions. It has been found in Chapter 3 that the
characteristic function formulation can reduce the amount of algebraic manipu-
lation required in the solution of a problem.

The Bayesian approach is applied to the linear stochastic control problem
in Chapter 3. It is used to obtain the Kalman filter equations [24,30], Rauch's
smoothing equations [36], and to prove the Separation Principle. It is seen
from the proof that the Separation Principle is valid because the error covari-

ance matrix for this case does not depend upon the measurement data.
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The procedure stated at the start of this section is applied in Chapter 4
under the constraint that p@k/gk) is Gaussian. It is demonstrated that the
filter equations that are obtained are not the linear Kalman equations. Instead,
second order terms appear and the conditional covariance becomes a function
of the measurement data. This is a distinct departure from the Kalman filter
in which the conditional covariance is independent of the measurements. It is,
however, characteristic of nonlinear estimates. It is further observed that a
distinct simplification in the filter is obtained by requiring the nominal value
for X1 to be X ko1 The control of a linear system with nonlinear measure-
ments is considered, and it is suggested that the Separation Principle is no
longer valid.

The problem of estimating the state of a spacecraft moving in a nearly
circular, 100 nautical orbit about the Earth from horizon sensor measurements
is considered in Chapter 5. A digital computer program simulation was set up
to simulate the physical system and the techniques and results obtained in
Chapters 3 and 4 are utilized. The linear filter of Chapter 3 and the nonlinear
filter of Chapter 4 are compared. In addition, techniques for extending the
range of the linear filter are proposed and used. Several interesting con-
clusions are suggested by these numerical resuilts.

In Chapter 6, attention is restricted to the nonlinear estimation problem.
In this chapter, the a posteriori density is approximated by a truncated
Edgeworth expansion. All considerations are limited to scalar plant and

measurement equations, and approximations retaining third and fourth order

16




conditional moments are derived. It is seen that the approximation is achieved
by developing recurrence relations for the moments of the distribution.

The results of Chapter 6 are applied to a simple problem in Chapter 7.
Filters based on a linear theory are exercised and compared with the filters
produced by the approximations. "Modified" linear techniques are also
examined.

The major results and conclusions provided by this study are summarized
in Chapter 8. The contents of each chapter are described in Section 8.1, and
the reader might consult that discussion before proceeding through Chapters 2

through 7.
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PRECEDING PAEE BLANK NOT FILMED.
CHAPTER TWO
THE BAYESIAN APPROACH
In the so-called "Bayesian approach" to the problems of determining

estimation and control policies for stochastic systems, one is concerned first

of all with the determination of the a posteriori density function p(x k/ gk-w).
This density function provides all of the data required for the solution of these
problems. To see that this is indeed the case, the following section shall be
devoted to the solution of the minimum mean-square estimation problem and
the optimal control problem. In this discussion, it is assumed that the nec-
essary density functions are available. The solution of these problems provide
a means for determining "best estimates™ and "optimal controllers" if the
p(§k/_z_k+Y) is known. In Section 2.2 it is demonstrated that the a posteriori
density can be determined from the a priori statistics specified for the plant

and measurement noise. Naturally, the functions f . and h, enter these con-

k k

siderations. In the concluding section of this chapter, the relations describing
the a posteriori density are rewritten in terms of characteristic functions.
Reference will be made frequently in this and subsequent chapters to
three properties of conditional density functions [37].
1. For random variables a and b with joint probability density
function p(a, b), the conditional density of a, given b, is defined
as

_ P(a, b) G @.1)
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2. For random variables a, b, and ¢,
p(a, ble) = p(ble) p(alb, ¢) (2.2)
This is known as the chain rule.
3. For random variables a, b, and ¢,
p(alb) = [p(alb, ¢) p(ble) db @.3)
This is the integrated form of the chain rule and represents one
version of the Chapman-Kolmogorov equation.

Note that the definition of conditional densities (2. 1) can be rewritten as

_ p(bla) p(a)

p(alb)
p(b)

(2. 4)

This relation is known as Bayes' rule and is the source for the term Bayesian
as used in this and other chapters.

Note that the integration indicated in (2. 3) involves vector variables.
The single integral sign will be used for both scalar and vector variables and
db will be used to describe the differential dbldbz' .. dbn. When more than one
vector is involved, the differential will be written as d(a, b,...,2).

2.1 OPTIMAL ESTIMATION AND CONTROL FOR STOCHASTIC TIME-
DISCRETE SYSTEMS

The mean-square estimation problem and the optimal control problem
shall be solved in this section in terms of the a posteriori density function.

2.1.1 The Minimum Mean-Square Estimation Problem

The solution of the minimum mean-square estimation problem [38] is

provided by the following lemma.
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LEMMA 2.1: Suppose that a random variable X is to be estimated from the

known variables* gq. The x and 24

have the joint probability density function
p(x, _z_q) The estimate _f_i_ is to be chosen as a function of the gq so that
Lo T ~ .
E[(x-x) (Xx-X)] = minimum

Then, the mean-square estimate of X is

% = E(xlz?) (V)
Proof: Write E[(g - §)T(g - X)] in terms of the joint density function.
E(&-% (2-0] = [G-x (R-op(x,2%4x2%H @5
From (2.1), the density function can be written as
p(x, 29 = P(x/zhp(z?h
Thus, (2.5) is equivalent to
BlE-% (R-01 = [fiE-0" & - »ea/zhdxd peaz’
Consider the integral in brackets.. Since X depends only upon the gq,
the integral can be written as
[G-9T@&-ope/zhdx = 28~ 2% Elx/z") +Blx x/z%)
= &-Elx/z%) 7@ - Bw/a%) + Elx x/2%)
- (Erx/z4) Erx/zY) (2.6)

By definition this quantity is positive, so to minimize E[(X - :_<)T(g - Xx)], it is
sufficient to minimize (2.6). Only the first term involves X, and the smallest

value that it can assume is zero. Thus, the minimizing estimate is given by

A

X = E[x/z7) Q.E.D.

* Recall that the set (z ;, Z,,--- ,g_q) is denoted by g_q.
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This lemma shows that the conditional mean provides the mean-square
estimate of x. Certainly, if one knows the a posteriori density function
p(§/ gq), then the estimation problem has in principle been solved. Other
estimates such as those given by the mode or by the median of the distribution
are also established from knowledge of p(gg/gq).
The conditional mean provides an unbiased estimate of a variable x.
That is, it is true that
E[x] = E[X].
This is verified in the following manner.
By definition, one has
E[&] = [p@haz’
But X is the conditional mean, so
E(X] = [{(xp@/zYdx} phdz?

From 2.1, it follows that
E[R] = o, zHdE, 29
Integrate with respect to g_q. Then,

E[X] = [xp( dx

IIE

Efx]

2.1.2 The Control Problem

Suppose that a feedback control policy g_N-l is to be determined for the
system (I) and (II) that minimizes (IIIC). It shall be shown that
LEMMA 2.2: The optimal feedback control policy for the system (I) - (II) and

performance index (HIC) is the control that causes
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- Nk, _ ..
EWN-k +1/ z ] = minimum Vo
where
Sy

/

Df ,
Nkt — ) Vi * A © S Enoged)

PO N ) A& Ngerrr TNl
and

A

Df -
N-k+1 f /;—k+2 0@\ j41” hN-k+1) P N—k+1) d N-k+1’ Z N-k+1)

At the last stage, the )¢N is defined to be zero. The 6 (- ) represents the

Dirac delta function. The superscript o on 7’4\]-1&2 is used to signify that it has

been evaluated with the optimal control u lc\)I—k +1° The cost associated with the

optimal control is

o N -/0 N-k+1
E[Vi_y) = BRIy /2 }

Proof: This assertion is proved inductively. Consider the control for the last

stage. First, from (III C)

N

E(VG] = E[ ) W&, u; )]
i=1

N |

= [1Y W, u )l 28 D ae, 2

i=1 ‘
N-1

FrYwe,u pree, 2 Hae™, 2 )
i=1

1=

N-1 . N N-
+PW e uy )pE S 2 DdE Lz ) @.7)

23



The integrand of the first term does not contain EN or z , S0 an integration

will eliminate these variables. The control u N-1 enters only the last integral

so no other terms need to be considered in determining the optimal control for
the last stage. Let

N N-1 N-
BV 2wy uy pps 2 ), 2 ) (2.8)

N -
Using the integrated chain rule (2.3), pX , g_N 1) can be written as

(_N’ N-l) - (— /xN 1’ N- 1) (—N 1 N 1)
I b/ L1 N1 o)
Dy /& 2 e
But el is a white noise sequence, so
b, /XN-l,_N -1 b, )

and since _z_N"1 defines u N-1’ it is clear from (I) that

| N-1 N-1
PEN/E 2 W)

p@N/KN_l’EN_I’.W_N_l)

where § (¢ ) represents the Dirac delta function. Thus,

pe s,z )

N-1 N-
pa Lz 6@y - £ Py W,
Substituting this into (2.8), E[V1] becomes

N-1 N-1 N N-1
E[V,] = [W@ 8y )6, -£0p@ P Tz HdE Lz Wy )

Let

- Df
A= W ey 6 @y - £Op@ NaE LWy )
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Then

E[V,] = [Fpy 2 ddey .z )

-2
where the integration with respect to §N has been performed. This can be
further modified to

} N 1

E[v,] = J j’/?{qp@N_l/g (2.9)

The E [V1] will be minimized by the control EI?I—I that causes

E[ % /z = minimum

This verifies (V C) for k = 1. Denote the value of ;ZN that is evaluated with

g;;_ 1 byZ§ so that
E[V;) = B{E[Z/z 1)

Suppose that the optimal controls go

0
N-k+1’* - *Unop 2T€ computed accord-

ing to (V C) and that the expected cost associated with these (k-1) stages is

E[V al = E{E["/N k42’2 /2 )

Then, using the Principle of Optimality, it follows that
_ N-k+1 N- N-k+1 N-

+E[V

1) (2. 10)

Let us rewrite the second term

- N- k+1 N-k+1 N-k+1 N-k+1
E[Vy ;] = [FhqiaP® ez )
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But

N-k+1 N-k+l N-k+1 N-k  N-k+l N-
P 2 ) = p(Z_N_k+1|§ 2 k)pQS ¥4 5

N-k+1 N- N-k+1 N-k

N-k+1 _N-k
PO grr/E 02 Iy

From the assumption on the noise and from (II), this reduces to

—k+ ~k+
p(?_{.Nklszl

__ N-k+l N-
2 ) = p& 'z k)y‘s Cykr1 ™ Bygesd)

PN s N1

Using this result, E[Vlc;_l] becomes

E[Vlg—ll = "2’71c\)1-k+2‘S ENetl ” hN-k+1)p(‘—’N—k+1)p@5N_k+l/ 2
4 (XN_k+1,§N—k+l N
Let
Ak > [ 1(\)1--1<+2“3 Cnger1 ™ BNt PO AN e BN )
So
B[V 13_1] - P G N N N .11

Introducing (2. 11) into (2. 10) yields
, N-k+1 N- N-k+1 N-
BIVid = J W1 ¥ s )PE 2 e e

Proceed as was done to obtain (2.9). It follows that

N-k+1 , EN-k)

_ _ N-k N-
Pl = oz e CIVEWE I ST LIRS BN
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Let

Df
= X -
ke SV a1 * - At Exoer ~ Encar)

LRI SRS

so that

— N- -
BV = [ By Py o2 Dl oz )

=7 N- N- N-k
74
JUZ P /2 ax Joe ez
The optimal control must satisfy (VC) and the cost is

E(V}) = E(BLZy,, /2 1]

This completes the proof of the lemma. Q.E.D.
The optimal feedback control problem has been solved in principle if the
a posteriori density p(_}ﬁ(/ gk) is known for all k. Similar results can be found
in [5,13, 33].
2.2 THE A POSTERIORI CONDITIONAL DENSITY FUNCTION
In the preceding section, it was shown that the a posteriori density func-
tion provides all of the information required to determine optimal estimation
and control policies. In this section, equations governing the structure of

p(gck/_z_k”) shall be derived.

2.2.1 Recursion Relation for p()_:k/gk)
The density p(:_ck/gk) can be described by an integral recurrence relation.

This fact shall be stated as a lemma and then proven.
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LEMMA 2. 3: For the system () - (I) and a nonrandomized control policy, the

a posteriori density function p(:_ck/ gk) evolves according to

p(r_ak/gk—l)pLZ_k/zk)

b /2 = = )
where
P,/ 27 = [pey /% 1% P& 1/ Ek_l)dﬁk-l (2.13)
and
P(Z_k/?_k_l) = ]"p(gk/zk—l)p@_k/gk)dxk (2. 14)
The initial condition p(x_/z ) is given by
p(zo/zo) = p@‘):z)p%) (2.15)
where |

p) = [pl /X )PE)ax
Proof: The initial condition can be established directly from Bayes rule (2. 4).
Thus, consider arbitrary k.
From the chain rule (2. 2), one sees that
k-1

p(r_ck,zk/é ) = p(:_ck/gk)p@k/?_kd)

SO

p@k,z_k/gk—l)

b @k /Ek-l)

P&, /2)

But the chain rule also enables us to write
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p(zsk,gk/gk-l) = p(gk/ék,ék-])p(l_gk/gk-l)
This can be simplified to
p(ﬁk,zk/ék—l) = p(gk/gk)p@k/ak—l)
since, from the noise assumptions in (I) and (II), it is true that gk given ggk is

independent of g_khl. Thus,

p(!_ck/zk"l)p@k/zk)
o, /5

b, /29 = )

This relation proves (IV). It remains to verify (2.13) and (2. 14).

From the integrated chain rule (2. 3),

p(zk/_z_k—l) = J‘p@k/@_l,ak'l)p(lgk_l/z_k-l)dﬁ(_l

But gk_l defines u _q80

P,/ AR PO /K1Y P& 4/ Ekd)dik-l

The integrated chain rule also allows one to write

p@k/ak'1> = ,J"p(:;nk/zk'l)p@k/g‘gdg%(
This completes the proof. Q.E.D.
The p(gk/gk_l) in (IV) does not depend upon X 8O it can be seen to be
nothing more than a normalization constant. The basic structure for the
recursion relation is provided by the numerator. It should be noted in passing
that it is not possible in general to perform the integration indicated in (2. 13)

to obtain a closed-form for p()_gk/gk-l)-
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2.2.2 The A Posteriori Density Function for Prediction and Smoothing

Equation (IV) provides the basic formula for filtering and control pur-
poses. Occasions do arise when it is desirable to obtain predicted or smoothed
estimates of X o it is necessary to determine the density p(ggl{/_z_k+Y) for
y #0. For this case the control variables will be eliminated thereby reducing
the plant equation to

% = L ¥ ) @)

LEMMA 2.4: For the system (I_) - (II), the a posteriori density function

o
p(ggk/g_k_Y) for y>0 is

p(:_ck/gk_Y) = J PR /X P& /X ). PGy +1/§k-v)

p(zgk_Y/zk—Y)d(gk_l, X ) (VIg)

The proof of this statement follows immediately from the repeated application
of the integrated chain rule. See the derivation of (2.13) for the case when
vy =1.

The derivation of the smoothing density is somewhat more involved. The
result can be stated as follows.
LEMMA 2.5: For the system (IE) - (I) the a posteriori conditional density

function p(}_;k_Y/ _z_k) for y > 0 is given by

k-y
p /2 P2y see. 2 /% )
/zk) - (}-"k—y —xk —*k-y+1 §k—L

px, /2 - - (VIL_)
ey p@k/ak 1),-..,p(§k_Y+l/_z_k b .

where p(gk, ces /_)gk_Y) is computed recursively according to

' Byl
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P& eyt Be ) T P B oKL IPE L/ Ke-y+1)
P&y By By (2.16)

The initial condition for this relation is (i.e., y = 1)

P/ ) = [pe /x)p@E /x )dx 2. 17)

Proof: The proof shall be inductive. Let Y =1 and consider

p(l‘k_rﬁt’ﬁk) = p(ﬁ(_l’zﬁ{’%{/ak—l)p@k-l)

i

k- - -
p@k,gk/a_:k_l,a l)p(:_ck_l/ak 1)p(&k 1)

pe 2 /% o6 /2 e
k-1 k-1
Py /X X P& /K )P /20 pE )

oz, /1P /5o /2 et (2. 18)

Furthermore, it is true that

peﬁ(_l'?ﬁkiik) = p(ﬁ{_l'l‘.k/gk)p@k)

k-1, k-1
pes, 0% /290 /2 o) (2. 19)
Equating (2. 18) and (2. 19) and rearranging terms, one obtains

bz, /x )P, /5oty /27
/2 = k-1
pE/Z ")

Pey 1%
Integrate with respect to X Then

P, /2 IpE /5 )
Pz, /2 )

p(zk_l/.z_k) =
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where, by the integrated chain rule (2.3),
Py /5 ) = [Pl /mIre /5 dx

This proves (2. 16) and (VIIE) fory =1.
Suppose that (VIIE) and (2. 16) are true for y =j~1 and let Yy =j. Proceed

as for Y = 1. Then it follows that
p@kﬁ”—‘k-jﬂ’gk) = PG B /B i4d)
k-j, . k-j
p(}_ck_j +1/-’5k-j)p(’-‘k_j/5 ez ) (2. 20)
and, also that
k. k k-1
P& Xy 0 2) T PE K /2)P@ /27 ).
k-j. k-
PEy 41 2 e 2. 21)
Equate (2.20) and (2.21) to obtain
k-j
/25 P /2 PG /K PG B K
POy 41/ 2 = 1ok
p(_z_k.z_ )"‘p(_z_k_j+1_z_. )

Integrate with respect to -)Sk—j+1' Then

k-j
P /2 PGB 40/ )
p@k/ék_l)- 0 A +1/ak—J)

p@k_j/zk) =

where from the integrated chain rule, it is true that
PG B /B = [P B /B i)
p(’—‘k-j+1/ e By g1

By the chain rule (2. 2), it is apparent that
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P& sss 'Zk-j+1/ Bejer) T PG 'Z‘k-j+z/ 2Ek-j+1)‘~°(§k-j+1/ Xeje1)
This completes the proof of VIIE and (2. 16). Q.E.D.
2.3 CHARACTERISTIC FUNCTION EQUIVALENTS

Relations for the a posteriori conditional density function p()_(k/gkw)
were derived in the preceding section. It is, of course, possible to obtain
from these relations their characteristic function equivalents. These relations
are to be derived and exhibited in this section. The characteristic functions
are introduced primarily for future reference. It has been found that in many
cases the problem solutions are most easily obtained using the characteristic
function formulation. The reader is encouraged to perform the derivations in
Chapter 3 by using the probability density relations of Section 2. 2.

Recall that the characteristic function o and the probability density func-

tion p associated with a random variable x form a Fourier transform pair [10].
Y\

9@ 2 Efexpis'®] = | expis mpmdx

-0

and 7 (2. 22)

p® = —— [ ex(-ig'Yo@ds
@m"

Consider the characteristic function for p()_ck/gk) as described by (IV).
LEMMA 2.6: The characteristic function qo(gk) for p(gk/gk) is
1

. T T
) = T el ) X - i nd
(2m p(gk/z )

WP CRLCREREY (v
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where cp(gk /k—l) and q)(gv) are the characteristic functions associated with
p(§k/ gk_l) and p(gk/gk) , respectively. The characteristic function (8, /k-l)

is given by

, T . T
Wy ey = T gm ORI, 8 X T IS 1N

(2m)

PE )P, _PAE 1 K808 ) (2. 23)
where go@w) is the characteristic function associated with p(_)gk/)_ck 1Y 1).

Also,

k-1 1
P /2 ) = [l e "

Py e PE A8 8 4 ) (2. 24)

The characteristic function cp@o) for p(_)go/go ) is
o) = (_O)Iexp[ i -5) x -isz]
PE JoE)dE -5) (2. 25)
The cp(gm) is the characteristic function for p@o).
Proof: The proof follows directly from the definitions (2. 22) and from (IV).

The characteristic function of pQ_{_k/zk) is

() = [explis ﬁ(]p@k/zk)dzk

= - k-1 Jexp [iégﬁlp(’fi{/ak_l)p@k/ﬁ{)dﬁ{ (2. 26)
pE /2 )

But

k- 1
b, /27 = m—)n.fexp[ 8 r %P6 8y @2D

34




and from (II) it is clear that

1
PE /) = e Iexp[-iégzk]co(_s_v)dgv (2. 28)

Substitute (2.27) and (2. 28) into (2. 26) and (VIII) follows directly.

The characteristic function r;o(sk /k- 1) is given by

Wy = Jexplisg ot /2 ax,
But from (I)
PO/ 1Yy = _1?1J'exp['i—w’—‘ksT Ipeds,
(2m)

so from (2. 13)

I . T . T
PCy -1 = 220 Iem[—l(gw_gk/k—l) T W WY

PPy PG K Sy Sy
This proves (2.23). The p(g_k/_z_k-l) can be written in terms of characteristic

functions directly from (2.14). The characteristic function ro(§0) follows

immediately from (2. 15) Q.E.D.
The characteristic function for the smoothing density follows immediately

from (VI).

LEMMA 2.7: The characteristic function equivalent of p(ggk/gk_Y) for y>0 is

_ 1 . T . T
PGy k) = (ZW)YnI eXP[-1E ) ~ &) X ~ I8y ox qle-
. T . T
exp [-i ka-Yl(k-Y+1 - 1sw§k_Y]
d@k-l’ T ’)‘{k-y’éwk—l’ e ’Ek/k—y) (IXE)
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LEMMA 2.8: The characteristic function for the smoothing density is

1

(s ) = Jexpl-i - )’ -
(—k-Y/k (m)[(y+1)m+n] n pL /zJ) (—kY v/ §kY
j=k-Y
k-1
T T k/k-y
exp [ ), i1 /%41 10C PGy a1 /-y
i=k-y

k/k-Y
d(%{—Y’gk— 9. v+1/k=- Y) Xgp)

where for this instance, we introduce the notation

k/ k-v
Ova1/k-y @k/k—Y’ v vl key

The density p(gk, ce ’Ek-‘( +1/2£k—Y) has the characteristic function

v-1
k/k -y . T k k
P _ v+1/k- Y) feXPll( zgk_j /k_Yék_j)]p@k_Yﬂ/gk_Y)d@k_Y +p (2-29)
j=0

where
Y-2

k _ 1 . T
P11/ Ky T [(-hmen] I ["(.sz-i/k-Yﬂ)
] p—1

(2m)

-i st -1i sT ]
—v—k-y+1 -wék-y+1

k/k y+1

PO yr2/k-y+1PEYPEY

k/k -y+1
d(—k-\(+2/k y+1’ gy Ek—\{+1 (2.30)
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The characteristic function for p(gk/gk_ 1) is

-1 . T . T
PQ -1 T (2™ J“""p["@v"—7k/1<-1) Z - ls X

o6 908,y 8, 5

The proof of this result is straightforward and shall be omitted.
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CHAPTER THREE

THE LINEAR, TIME-DISCRETE STOCHASTIC CONTROL PROBLEM

The model of Chapter 1 shall be specialized to that of a linear system.
The results presented in this chapter are not new but have been included to
illustrate the application of the general theory of Chapter 2 to a problem of
fundamental imﬁortance. It is believed that this discussion indicates the rela-
tive ease with which many of the most important results of the theory of linear
systems are obtained using the Bayesian approach.

Assume that the plant is described by the linear, difference equation

B k%1 Tk k%1 T Yo -1

and the state is measured imperfectly according to

e " Y, @-1)

The white noise sequences {yj } and {vj} shall be explicitly assumed to be

gaussian as is the distribution of the initial state X The symbol L has been

appended to the equation numbers to emphasize that the systems are linear.
The densities for plant noise ﬂj, measurement noise y_J , and initial

condition x are
=0

_ n -1/2 1 T_-1
P = [(2m lell exp - ZW. QW 3. 1)
_ m -1/2 1 T -1
py) = 1@ IR |1 exp - 5 v R Ty, (3.2)
- 1 T, -1
pe) = (e M 1 e -2 -9 M e n) (3.9
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In order to write (3.1) - (3.3), it is necessary to assume that the covariance
matrix of each distribution is positive-definite. If the matrix were singular,
one could always consider the variable in the subspace spanned by the eigen-
vectors corresponding to the nonzero eigenvalues of the covariance matrix [10].
The covariance matrix of the transformed variable in the reduced space would
be positive-definite. This difficulty can also be avoided by allowing the char-
acteristic function to be the defining relation for the distribution and restrict-
ing consideration to this function [24]. The latter alternative shall be utilized
in Section 3. 1.

The control variables will be selected so that the expected value of the

quadratic performance index

N
v, T T U
Vn L o Wi 8 W ) (e-D)
i=1
is minimized. The mean-square error criteria
E[(X, - )T“ -x)] = minimum I_-L)
(&) - %) & - x5 g

will be seen in Section 3. 2 to be required in the solution of the control problem
for the estimate of the state. Mean-square estimates are considered in Sec-
tion 3.1 as a preliminary to the discussion of the control problem.
3.1 MINIMUM MEAN-SQUARE ESTIMATES

The model for the plant will be simplified in this section by the omission

of the control terms. Then, the state evolves in accordance with

e = N k-1%k-1 T W1 (Ig-D
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It was shown in Section 2.1 that the estimate resulting from the minimum
mean-square error criteria is given by the conditional mean of the a posteriori
density function. This is true for all three aspects (i.e., filtering, prediction,
and smoothing) of the estimation problem and the solution to each shall be
presented.

Two general results [10,39] will be used in the discussion.

1
n

(2m

M Jexplis'x1dx = 6(9) (3.4)

where 6 (* ) is the Dirac delta function

@

n
(2 f exp[n'z -z Az)dz =(ﬁ;|-)l

-0

2 1 T, -1
"t n"a ™) (3.5)

for any complex n and positive-definite A.

LEMMA 3.1: The a posteriori density p(lc_k/_z_k) for the system (IE—L) - (II-L)

is gaussian
-1/2 1 A T - ~
b /29 = 1@"[P, 1] / exp -5l -R) P ~E)) XD
with mean value

& - B RG RE) ©.6

where

A

= ¥ k-1%-1 3.7

1

X
T, T -
K = P/H (HPH +R) (3.8)

T
P = Pt ke1 t Uer (3.9)

and covariance matrix
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P_= P -KHP (3. 10)

At to the mean value is

A - + -
x, = atK @ H a) (3.11)
where
T -1
K =MHT(HMH +R) (3.12)
0 00 O OO o
and the covariance matrix is
P =M -KHM (3.13)
o (o) 00 O

The equations described by this lemma constitute the so-called Kalman
filter [25,30]. Within the framework of the Bayesian approach, the proof has
been found to be established most easily using the characteristic function formu-
lation described in Section 2.3. Note again that with this approach, the covari-
ance matrices need not be positive-definite.

Proof: Let us first establish the initial conditions (3. 11) - (3.13). From (3. 3)

it follows that the characteristic function for X, is
_ . T 1T
o ) = exp{lg_mg—z_s_mMs } (3. 14)
and from (II-L) and (3. 2) the characteristic function of Eo given X, is

_ . T 1T
q)(_s_v) = exp{l_s_VHo§o 2 gVRogv} (3. 15)
Substitute (3.14) and (3. 15) into (2. 25) and let

Df 1

kO - n+m
em™ p,)
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T T T 1T
= -i - - - +i - =
(s ) kofexp[ (s 8, Hos X, igvgo is a-os M s
l R 8 ] ds_,s ,x
2 (—m )
Integrate with respect to .98 and use (3.4). Then
T T T 1T
= + - -i -—
P(s ) kofé (HogV 5,8 Yexp| s 2z, +is a 58 Mos

1 T
"2 8y RE, 1 46,8

After integrating with respect to , this becomes

S
—m
T 1 T

96, = k,explis a-55 Ms Ifexp(s [-i(z - Ha) -HMs |

—lsT(HMHT+R)s }ds
2=V 0o oo o~V v

Using (3. 5) and evaluating p@o) , this reduces to

T 1T
o(E) = exp{lgo [a +K z -Ha)] -2§O[MO—KOHOMO]§0} (3.16)

But (3. 16) is the characteristic function equivalent of (XI) with mean and
covariance described by (3. 11) - (3. 13).
To verify (3.6) - (3. 10) assume that the lemma is true for tk-l and form

cp(sk/k_l). From (IE—L) and (3. 11)

°@,) = exp{1s S ko1Bke1 " s Qk 1-‘w} (3.17)

Substitute (3. 17) and cp(_.s_z_k_l) into (2.23). It follows in a straightforward

manner that

PEy /-1 = eXPlis /k X - 2-k/k 1Pk /-1 (3.18)
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where &'( and Pl'{ are defined by (3.7) and (3.9). Note that this provides a solu-
tion of the one-stage prediction problem.

The proof of (XI) with (3.6), (3.8), and (3. 10) proceeds in a manner that
is identical with that used to derive (3.11) - (3. 13) except that g;( and Pl'(
replace a and Mo'

Q.E.D.

It can be proven immediately from (IXE) that the prediction problem has
the following solution.

LEMMA 3.2: The a posteriori density p(:_ck/ gk-Y) , Y >0, for the system (IE-L) -
(IIE—L) is gaussian
k-y. n -1/2

peg/z ) = 1@ P, ]

ex 5 & -y Re/kd Prfky®efiy " Bapiyd D)

with mean value

~ - Q A
E/k-y K, k-vYk-y (3.19)

and covariance computed recursively from

= 3 P 5 T

k,k-1"k-1/k-y ke, k-1 * F-1 (3. 20)

Pk/k—\(

where

_ T
1:‘k-y+1/k—\( - @k—Y+1,k—YPk—Y§k—Y+1,k-Y +Qk—Y

The proof was established to a major extent in the derivation of (3. 18).

The remainder of the proof shall be omitted.
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The solution of the smoothing problem requires more involved algebraic
manipulations than were required for the prediction and smoothing problems.
The equations stated in the following lemma were first derived by Rauch [36].
LEMMA 3.3: The a posteriori density p(Ek_Y/Ek) » Y>0, for the system (IE-L) -
(IIE—L) is gaussian

n -1/2
= [(2am) " |P
pEg_/2) = (@p_ ) )
1 A T _1 A
exp - = { - P -
P9 Wy Xe-v/ k-v/k Be-y/k 5k-Y/k)}

with mean value

~ = A~ + ~ ~ ~
By T By ¥ Oy BBy T Bkeyrt, key By (3.21)
where
_ T -1
Ck-y Pk—yék—y+1/k-ypk-y+1 (3.22)
and covariance
T
= - 1
Pk—Y e Pk-Y+Ck-Y(Pk-Y+1 p Pk-y+1)ck—Y (3. 23)

Proof: These relations shall only be verified for a one and two-stage
processes.
Consider a one-stage problem (i.e., Y =1). Then, substitute (3.15) and

(3.17) into (2.31). This yields

1 . T . T T
S

1 T
"3 R, t 88 1) daox s 8 (3.24)
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Integrate with respect to E-k and gc_k These integrations will introduce the delta

T
functions 6 (gv -0, k- 1) and 6 (gw - Hk 8, ). Next, integrate relative to 8, and

then with respect to §v . This leads to

1 T 1T
= mm P0G e k11 T 2 Tkl

@ -7
k/k-1 @)

T
(HQ_H +B) % 4] (3. 25)

k
The characteristic function for - given z according to (XE) is

_ . T T
PE 10 T kk-l/k"r expl-16y 1 =S 10 Fe-1 Gk 1%

) PE 1O 1191810 G /1)
where
‘ Df 1
-1/k ol (T mebn] @ /_Z_k-l)
From (3.25) and (XI), this becomes
_ . T .T T

PG T kk—1/kje"‘p[‘@k-l/k Se-1 7t U k-1 Gk Fx-1
—‘oTz+isT" —'l-sTP s
YO k15 T B 1 Bk-1 T 2 Bk-1 k-15%%-1

1T T
"2 % -1 1B FRIG A 11965 10 % 10 -1

Integration with respect to X1 introduces the delta function 6 @k-l /"8
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1T
PE 1) = Ke-1/x PS5 1/k5,< 172 &1/ k181!

. . T T T
) expl i 8 X 1 -2) -8 1P 1% k~1H'k 19 k-1

2 k/k 1(HkP'H +RIG 4 1300 4 (3.26)

This integral is evaluated by inspection by applying (3. 5). After the constant

kk-l /k is determined, (3.26) becomes

P10 = PSR 1A S St pPe i1k (8.27)
The mean value is
Bk ™ Bt Keaale ™ B - (3.28)
where
Be-1/k ~ Pk—lék,i-lﬁ;fmkpﬁﬁ;(r +RY™ (3. 29)
and the covariance is
Pk = Pro1 Ko, k-1Fk-1 (3. 30)

Equations (3.28) - (3. 30) do not appear to have the form described by the
lemma, but it will be shown that they are equivalent.
To prove the equivalence of (3.28) - (3.30) and (3. 21) - (3. 23) observe

that (3. 30) can be written as

— T 1
Pk—l/k - Pk-l Pk—lék,k—lpk KkaQk,k-lpk-l

But from (3. 10)
-1

KkH'k —I-PP'

-10]

47



P _p +p 2 I mlp

-1
- I\ P
k-1/k ~ Tk-11 "k-1k,k-1k “k PP, @ P

k,k-1 k-1
But this is in accord with (3.23) when Y = 1 and the definition of Ck 1 is

introduced. (3.28) reduces to (3.21) by recalling from (3.6) - (3.8) that
K@ B i) T & fk-1%e1

This allows (3. 28) to be written as

~

A - + A
R 1k = Be1t P, k 1Pk (Ek b k-1
which completes the proof for y = 1.

The derivation of the smoothing density for Y > 1 becomes considerably

more involved. For y = 2, one finds that rp(_k /k-2" %-1/k- 2) is
(@, G ) = —
k/k-2’“k-1/k-2 @m™
T T T T
exP[l(Qk’k-]_Hk'q‘k/k—l + H'k—l'gk"l/k—z)
?em1, k-2%k-2]
exp {—l . T g T
2 —k/k—z -k—l/k-Z]
o -
k/k-2 k-2 “k/k-2 !
|
(3.31)
Ao ei/kez| | -1/k-2

where

Df T T
H @ 1o k-1t UM YR
Df T
Necik-z = o122 * By
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Df T
Ak—z - Hka,k—le-ZHk-l

Then, after considerable manipulation, one obtains

- T A 1 T
PEpn) T FPUS o/ K ok " 2 Bkoo/ikPk-2/ik-2 k) (3.32)
where

o 1

. _ T - T T T -1
Ne-a/k ~ S-2 " Proobkon k2B (Prorfi k1B L PRHE +RY

X -1 T
@ - Bl k282 * Preo1aPi- 1P k1M1

! T -1 A~
(Hk-lpk-].}ik—l + Rk—l) (ak - Hk—lék—l, k—2§(-—2)] (3.33)
and

~ T -1
Prok = Prea Prok-1,k-2lPko1 T

-1, T
k-1/k" k-1Fk-1"%-1

ST -1
Hy Ptk PR By
T T T -1
* P 1P, k-1 B Pty * RY B ]

Qk—l, k-2Pk-2 (3.34)
(3.33) and (3. 34) can be shown to be equivalent to (3.21) and (3. 23).

Q.E.D.
The preceding lemmas provide the complete solution of the estimation
problem for linear systems. The filter equations will be required in the dis-

cussion of the stochastic control problem as presented in the next section.
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3.2 THE LINEAR FEEDBACK CONTROL LAW

In this section the control law for the system (I-L) - (II-L) is derived
under the constraint that the control minimizes the expected value of the
performance index (III C-L). Before dealing with this problem, a result from
the theory of optimal control of deterministic systems shall be stated.

Suppose that the plant is described by

% = b k%1 Pk ke1%-1 (3.39)
and that X is known at each sampling time tk' The control policy that mini-
mizes (III C—L) under these constraints is given by the following lemma [40].
LEMMA 3.4: The optimal control Eﬁ for the system (3. 35) and performance

index (III C—L) is described by

(o]
A - - A
UN-k-1 N-k N-k, N-k-1ZN-k-1 X1V)
where
T U -1
= I
Mok = CNek, N-k-1 N-K N-k, N-k-1 T Wn-k-1
T 1
TNk, N-k-1"N-k (3. 36)
1 =% T i % + (3.37)
N-k N-k+1,N-k N-k+1 N-k+1,N-k = N-k .
=M - A
Mok = Mok ™ "Neid N-k, N-k-1"N-k (3.38)

For k =0, the HN +1 appearing in (3. 37) is taken to be identically zero.
It is interesting to observe the similarity of (3.36) - (3. 38) to the gain and

covariance matrices (3.8) - (3. 10) of the optimal filter. This similarity has
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been recognized by Kalman and formalized in terms of a "Duality Principle"
[26,40].

The control law (XIV) has begen included because it plays a fundamental
role in the solution of the stochastic control law. This problem has the solu-

tion described in the following statement.
SEPARATION PRINCIPLE: For the model described by (I-L), (II-1), and

(111 C—L) , the optimal stochastic control law is described by
o ~
= -A_ 9
UN-k-1 N-k N-k, N-k-1ZN-k-1

A Y . . o - . . s . -
where N-k 18 defined by (3.36) - (3.38). The xN k-1 is the minimum mean

square estimate of the state x

N-k-1
z .

XN k-1 as obtained from the measurement data
- . N-k-2 . e

In obtaining the estimate, the u is treated as a deterministic

function.

Proof: The proof of this principle is obtained through the direct application

of the lemma of Section 2.1.2. Consider the last stage.

- J& WX N v N 18N-1
8 &y~ By N-1EN-1 T TN, N-19N-1 T ¥n-1)
PWy_ P& Wy ) (3. 39)

Carry out the indicated integrations. This yields

= T T. T
=% —N 1°N, N-1 Wx NN, N-22N-1 T ZN-12N, N-1VN N, N-19N-1

T
-N-l(wN- N,N-l"ﬁN,N-l’%-l*“ace [WyQn-q] B.40)

The control LI is to be chosen to minimize the conditional expectation of/ZN.
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_,  N-1, _ T
E[//N/'Z' ] = Elxg 8y n-1VnPN, N-1EN-1!

T U T Wngr
+
e W P IN N-1YN N, N-18N-1

+ trace [W)ITIQN_I] (3.41)

where we used the fact that

N N-1
Xeq © Elxg /2 ]

~ N"l -
Since X\ 2ssumes that z is given, the controls gN 2 are known and
can be treated as deterministic forcing functions. Then, from Reference 30
we know that the error in the estimate is independent of a known function.

It follows immediately from (3.41) that the control that minimizes

E[/‘r-‘é;,/aN" ] is

ngy = Ty, N- WXTN N-17 " N-1 )_]TN,’Il:I-lw)IfI@N, N-1EN-1 B4
Let
m 2t w’;
and
N 7 ‘FN,q;:I-lHiIFN,N-lJ’W i ]TN N1

Then, (3.42) satisfies the statement of the Separation Principle for the last

stage.

Consider a two-stage problem. The control for the last stage is given by

(3.42) and, using it, one can form /?/1(\)1
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>0 _ T T '
An T B ne1iNEN, M- 12BNl

T T

_ '
2 N, N-1"N" N, N-1'N

EN-1 :

N, N-13N-1

LT . T n
* A1, N-1'N N, N-1 NN, N-1EN-1

X
+ trace [WNQ (3.43)

N—1]

At this point recall that the estimate can be stated as
K1 T et B
Use this relation to eliminate gN_l in (3.43). After regrouping terms, the

=0
A __is seen to be

N
& ; = Eer:lé N,T N-1"NN, N-15N-1
+ ENT_léN,’lxix-lnirr N, N—lANQN, N—lgN-l
+ trace [W)I\(IQN—I] (3-44)
where

= -
HN IIN NFN,N—lAN

The HN agrees with (3.38). The cost associated with the optimal control is

o, _ o, N-1
E[V;] = E{E[Zp/z" 1)
T T N-1
- I
E{ElﬁN-léN,N—l N§1\I,N-1§N-1‘E I
~ ~T |, N-1
o r
+trace 8 N -1 NON, N-1E ByoiEnog 2 1D

+ trace [W}I\(IQN- 1]
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At this juncture it is important to recognize that the conditional covari-
ance E[EN—IEII{‘I-I‘ EN—l] is independent of the control vectors g_N_l and the
measurements g_N_l. This follows from the results in Section 3.1. Because
of this fact, only the first term must be considered in determining the optimal
control for earlier times. (This aspect is discussed further in Section 4. 3.)
Since the term trace {QN, g-lnhl‘ N, N-lANQN, N—lPN-l + W)I\(IQN-I} has no
bearing on the selection of the control policy, it will be neglected and the #!I?I

will be redefined as

’Zo= TQT

N~ EN-1 e

N,E\I—l N (3.45)

N, N-12N-1

and it follows immediately from (V C) that

Thus,

Z*' l
|

®
ZN
=
+
=~
b=

8 Bn_1 ™ ¥N-1, N-2EN-2 ~ IN-1, N-2%N-2 ~ ¥n-2)

where

Df _ X T
' = 1
IN-1 = Wno1™ & N-1 NON, N-1

It follows without difficulty that the control u._ . that minimizes E [,Zi-;I / EN-z]
is

Uz = T MNo1iNen N-2EN-2
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where AN— 1 is defined by (3.36) ~ (3.38). The proof for any k assuming that the

74 I?I—k— 9 is (again, retaining only those terms that depend upon the control)

70 T s T g

N-k+2  EN-k+1°N-k+2, N-k+1 N-k+2° N-k+2, N-k+1EN-k+1

is obtained directly from (V C).

Q.E.D.
This completes the solution of the optimal stochastic control problem for
the linear system (I-L) - (II-L) and the quadratic performance index (III C-L).
By necessity, the discussion has been restricted to the most important aspects
of the problem. The reader is directed to References 40 to 44 for a more

detailed examination of the linear problem.
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PRECEDMNG PAGE BEANK NOT FILMED.
CHAPTER FOUR
A GENERALIZATION OF THE KALMAN FILTER

In this chapter, the perturbative Bayesian scheme described in Section
1.3 is applied to the problem of determining an approximation to the a posteriori
density function associated with a nonlinear system. In compliance with the
aforementioned technique, the form of the density must be specified. It shall
be required to be gaussian for all k. This leads to a natural generalization of
the Kalman filter and suggests several interesting conclusions.

The approximation that is described in this chapter represents a generali-
zation of a result obtained by Aoki [33]. Results obtained by other investiga-
tors also indicate that the Kalman filter does not represent the most general
gaussian approximation. This problem has been considered for time-continuous
systems by Bucy [20], Bass et al [21], and Fisher [23]. Jazwinski [45] has
dealt with cases that involve discrete measurement data. His result has the
disadvantage that it does not reduce to the Kalman filter when the nonlinear
effects are set equal to zero. It is shown in Section 4. 2 that the equations
derived here do reduce to Kalman's relations.

The general result is stated in Section 4.1, and an outline of the deriva-
tion is presented. Several interesting conclusions follow from this result, and
these aspects are discussed in Section 4. 2. The control of a system described
by a linear plant and nonlinear measurements is discussed in the light of this
approximation, and it is suggested that the Separation Principle is no longer

valid for this system.
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The filter resulting from this approximation is utilized in Chapters 5
and 7 to determine its behavior relative to linear and other nonlinear filters.
The results that are obtained, particularly those in Chapter 7, suggest that one
must approach the problem of approximating the a posteriori density with
caution because it appears that the estimates provided by this filter are biased.
This undesirable feature is discussed in more detail below. Another gaussian
approximation is discussed in Chapters 6 and 7.

4.1 AN A POSTERIORI GAUSSIAN DENSITY FOR FILTERING OF NONLINEAR
SYSTEMS

Consider a system in which the state ﬁ( evolves according to the non-

linear difference equation

= + -
5 T L&) -1
where X is n-dimensional. The additive noise w1 is a gaussian sequence

with mean and covariance

E[w.] =0 for all j
[__j] 0 o i

T
E [_V_V_jﬂk] = Qké kj
Note that no control terms are included in (I-N)

The measurement data z, are described by

z

B = bty @-N
where Ek is m~-dimensional. The additive noise vy is a gaussian sequence with
mean and covariance

E[yj] =0 for all j
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T
By ) = Ry
The sequences {Y‘k} and {v_vk} are assumed to be independent. That is

E[v] w,T] =0 for all k,j.

The initial state 50 is taken to be a gaussian random variable with mean and

covariance

E[x] =

j®

M
o

E[x xT]
=o™o
Also, the _}_c_o is independent of the noise sequences.

T, _ = T
E[xv. ] 0 E[_z_{_oﬂk]

The covariance matrices {Rk}, {Qk} , and M0 shall be assumed to be
positive-definite in much of the succeeding presentation, but this is not a
severe restriction. If any of these matrices were singular, an appropriate
linear transformation would yield random variables of smaller dimension that
have positive-definite covariance matrices and the derivation would be carried
out in terms of the new variables. Further, the restriction can be seen to be
relaxed in the final relations that are obtained for the estimation policy.

The noise has been assumed to be additive in (I-N) and (II-N) in order to
simplify the densities p(§k/§{_1) and p(gk/gk). If non-additive noise were
assumed, it would be necessary to introduce the Jacobians of ik and l_1k with

the concomitant complications.
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The procedure described in Section 1.3 shall be used to approximate the
a posteriori density function p(n_Lk/ g_k) . It will be assumed that nominal values
El’:-l are available that will permit the conditional density p(gk/gk) to be
gaussian for all k. Taylor series expansions of the gk and ka will be intro-
duced using the nominal values of the state. This procedure leads to a generali-
zation of the results for linear systems (i.e., of the Kalman filter).

Before proceeding further, let us introduce some of the notations that
will appear. Let

1 1 ‘-\

afk+1 o +1 \\
ces ‘
I

0%, 2%

kK (agk

n
8xk axk ; evaluated with 51’:

with the superscripts denote the component of the vector. The first partial

derivatives of }_1_k +1 with respect to X1 are

Di D1,

Bar = 0K 41
The derivatives are evaluated with
Df
= *
§k+1 £k+1(’—‘k)
Second partial derivatives are also used. The second partials of the ith com-

ponent of 1 and gk +1 are denoted as

L
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*

2i
% hena

i Df
G =
k aikaﬁ(
and
2 i *
A of [P
ktl 0% 419541
i i . *
F .
The Gk and Jk +1 are evaluated with % and B+ respectively.
Finally, the perturbations in the state and measurement vectors are
Df
= -k
0% = X -x
and

Df

02141 = Fr1 ™ B Gend)
With this introduction, we make the following assertion.
LEMMA 4.1: Suppose that the ik and hk of (I-N) and (II-N) have at least con-
tinuous second partial derivatives. Then, assuming that there exists some
nominal value 51"(‘ of the state that is a sufficiently good approximation, the a

R . k+ .

posteriori density p(§k +1/ z 1) can be written

o, /2D = e, 17

1 A T -l A
eXP =5 Kr1 " Kt Frr1®er1 ~ Head &)
where
A - x Py
Xerl ~ L) +0%

. T -1
%41 = Proaa[Hior Ris10%ean * @ F *3 Ek)nk+1
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-1 T -1 T -1 -1
= + -
P = QFFPF, 2B L %
m
T -1 T _-1 z i
“ B Bt e B e TtV k+1)
i=1

At to the density is gaussian with mean i_o and covariance Po.

A - * + A
X, = XgHox,
5% = P [H'R ‘sz +M Yoa)
-0 (o] O o -0 (o] -
To-1. % i 1.-1
P = [HR H -Elel +M ]
(o] O O (o] . 0o o0 (o]

i=1
Most of the quantities appearing in (XV) have already been defined. However,
the y11<+1 are components of the vector

Df _-1
Yep1 - Bpa®Zren

and
n
Df T i -1 -1_, i
E = sznk+1Pk 0X
i=1

A N S

- 1
K+l ka k "k

T
. th _
The g;{ is the i~ row of le.
As was shown in Section 2.1, the minimum mean-square estimate is

provided by ,_zkﬂ. Note that P

o1 is a covariance matrix, so it must always

be non-negative definite and preferably should be positive-definite. The man~
ner in which the second order terms enter the defining relation suggests that
Pk+1 might lose this sign-definiteness if the magnitude of these terms becomes

too large. This can provide a criteria for judging when the nominal no longer
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provides a reference that is adequate for the gaussian property to remain
valid.
Proof: In the subsequent pages, only a detailed outline of the proof is given.
The complete derivation is found in Appendix A.

The a priori statistics for X s {y_l }, and {y_l } are gaussian and described
by (3.1) - (3.3). The desired recursion relations are obtained inductively.

First, the initial density function p(go/gn ) is determined, and then p(g:_l{+1/zk+l)

is derived after assuming the gaussian form for p(lnk/ gk)

_ 1 T -1
pE,/x) =k exe -5l ~h) R e, -h)) (*-
Expand 11_0 in a Taylor series about 53 and retain only the quadratic terms in

. T -1
650 that appear in (go - }_10) Ro (go - 110). Then

1, T.-1 T, -1
= L - R
PEy/x) = Ky oxp -5 (02,R 0z, - 202, R H 0%,
1 m s .
+6x [H R 'H - leylléx } 4.2)
-0 O O (o] . 10 o° To
1=

where the notation has been defined above. The nature of the approximation of
p(go/x_0 ) (and, more generally, the p(gk/ )_:k)) has been found to a critical con-

cern in attempting to describe the p(gk/ _z_k) This aspect will be discussed in

Chapter 6.

Substitution of (3.3) and (4.2) into (2. 15) yields

1 A T "'1 A
p(x/_z_o) =koexp-§{(x -X)P -:_co)} (4.3)
where
X = x*+6X
o o
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~

-1 -
8% =P [HTR 6z +M lag]

[HRH ZJ -1
O

and

6a = a - Xy

The minimum mean-square estimate of X given the data z is )'io.
Z,18%

+
A posteriori density p(gk_*_l/gk 1

To determine the relations for an arbitrary sampling time, assume at

tk that
— l A T _1 ~
p@k/_z_k) = kkexp-z{(:_ck 2P (§k—ggk)} (4.4)
The derivation of p()_(k+ 1/z )1s accomplished according to the following steps.

1. Form p(§k+1/_z_ ).

From (3.1) and (I-N), it is clear that

1 T
Pley/%) = Ky o =5 105 ~ B ) Qg - firr)? (4.5)
Expand gkﬂ in a Taylor series and retain only the quadratic terms (and lower

order) in 6x, in the exponent. This result in combination with (4.4) produces
%

k k
Tk w 1,..T -1 AT -1 .
p@kﬂ/gk) N Ko ®XP =% {65k+1Qk 0K YO P 0K
T -1
- 6% B 6gk} (4.6)

where

— T -1 "1 -~
6y, = BIF, Q 0% ,,+P 0x]
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n

1 T -1 ii -1

B = FQ F '2 G * Py
i=1

and

Df -1
CHER N -

. T -1
2. Modify Gkak ayk

T -1
v i . . .
The 621{ Bk é Yy is not a quadratic function of 6 Ek +1° s80 it must be
+1
modified in order for the p(gk +1/_z_k ) to have the gaussian form. Using a
Neumann series and neglecting all terms of order greater than quadratic in
5 )_ck +1’ one obtains

T -1 WT_-1-1 -1 . ao-l-1 T.-1.1 |
OV By 6y = OX P L 1Py 0% + 20X P I L (FL Q +5 EI0X

T -1 -1 T -1 __To-1_ -1
0% 19 il B +2E L e
T -1
+E D Belo Xy *.7)

where

T -1 -1
Metr = FeQ Fet By

. T

n
i "1 "1 A~ 1
By = sznkﬂPk 0 X gy
i=1
. T -
The g;{ is the ith row of le.

3. Determine e +1/§k +1)

From (II-N) and (4. 1), one sees that

1 T _-1
P@y 1/ = K-l ~h VR L@E -k ) @.8)

65



Expand hk +1 in a Taylor series and retain only the appropriate terms. Then
1 T -1
LIRS Bl L {6z 1 Rir® LA

m
1 T T _ -1 i i
exp - 5 {ox G IH R g - 2 Iet1 ke+1]
i=1

T -1
8%t ™ 208 1R es® 25k+1} (4-9)

4, Form psz+1/_z_k)

It follows in a straightforward manner from (IV), (4.6), (4.7), and (4.9)

that

kkk k

- W V l T ~ T -1 A~
p@kﬂ/ Ek) - k K eXp =% {‘55-1<+1Rk+1t3 Zir1 ~ OB P10 Ko
+1 Nk
AT -1 -1 -1 _-1__.

+6% [P -P L P ]5>_;k} (4.10)

where § X

K+l and Pk+1 shall be defined below.

4
5. Form p(_:gk_'_l/_z_k 1)

Performing the operations indicated by (IV), the a posteriori density is
found to be given by (XV) thereby completing the proof.
Q.E.D.
4,2 ON THE APPROXIMATION OF NONLINEAR SYSTEMS
Commonly, the analysis of the nonlinear system (I-N) and (II-N) is
approached by introducing linear perturbation theory. This requires the choice
of nominal values 51’:_1 for the state. Then, the linear perturbation equations

are
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TPt ey (.10

0%

Gg_k = Hka-,sk"'zk (4.12)
where the Fk and H'k have been defined in Section 4.1. The choice of the
nominal is made somewhat arbitrarily, and its adequacy is gauged by the sub-
sequent results.

Assuming that (4.11) and (4. 12) are accurate representations of the
deviations from the nominal, the problem of estimating X reduces to the
simpler problem of estimatingé X Since this system is linear and the noise
sequences are gaussian, the recursive minimum mean-square estimate of 6)_ck
is given by the Kalman filter equations of Section 3.1. The result of the pre-
ceding section gives a generalization of this linear approximation, and in so
doing, provides insight into other aspects of the problem, including the choice

of the nominal.

4,2.1 Relation to the Kalman Filter

In this section we shall demonstrate that (XV) reduces to the Kalman case

when the matrices containing the second partial derivatives are identically zero.

Let
Gi =Ji =0 for all i,j
k k+1 &
Then, it is true that
Ek =0

The equation for § ik +1 in XV) reduces to

R T -1 1 -1.-1 .
= + I " P
0% 1 = Pl Rieri0%a T U Fican i 02!
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and the covariance Pk +1 becomes

-1
P = [Q*+F Py k s Hk+1 k+1Hk+1
Let
£ T
1 =
P, O Q +FPF, 4.13)

From a matrix inversion lemma [46,30], it follows that

= P!
Pri1 = Pror " KM P (4.14)

where

-1

Kk+ 1Hk+1[Hk+1 k+1H'k+1 Ryl (4.15)

But (4.13) - (4.15) correspond to the gain and error covariance matrix of the
Kalman filter equation (XI) with Fk substituted for §k+ 1,k
The estimate agk 41 can be modified since it is known [30] that (4.15) can

be written as

T _ -1
K1 ~ Pt Bisn (4.16)
Then
A "1 -1 "1 ~
I
6% 11 = Ke10%a1 * P Uk Fieo kP 0%

Substitute the defining relation for Hl:_ 1 Then this becomes

-~ -1 a
1
0% 11 = Kpy1®%1 ¥ PP 0 &

But

Pk+1 k+1 = (- Ky

SO
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6§k+1 - Fk‘5 Zﬁ( * Kk+1[65k+1 B Hk+1Fk‘s Zi:]
which is the Kalman estimate.

4,2.2 Choice of the Nominal

The values of the state that are chosen as the nominal will obviously play
a key role in determining the validity of the approximation. For many prob-
lems (e.g., space navigation), it is convenient to specify a nominal before the
system is in operation and to then compute many of the quantities required by
the filter off-line. This policy minimizes the amount of computation that must
be performed while the system is in operation. It has been suggested that it is
not always desirable to prespecify the nominal because the quality of the linear
approximation is caused to deteriorate more rapidly. The filter described by
(XV) provides analytical corroboration of this intuitive idea and demonstrates
that the best choice of nominal at each sampling time tk +1 is the gk

In XV) suppose that the nominal is selected as

A

S

with this nominal, it is obvious from

~ Df 4
6§k=f

that

agkso.

The estimate (XV) reduces immediately to

A "1
0% 11 = PrPnrPian® e (4.17)
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Furthermore, from the definition of E. , observe that

k
Ek = 0.
Therefore,
m
-1, g TRl z i i -1
= 1 _
Prer = (@) F BB fen le+1yk+1] (4.18)
1=

Certainly (4.17) and (4. 18) are simpler in appearance than their counterparts

in (XV). In fact, one notices that the second order term G' from the plant has

k
disappeared entirely. The error covariance matrix Pk +1 contains the second
order measurement effects Jk +1° and these terms cause the Pk+1 to depend

upon the measurement data. This is in sharp contrast with the Kalman filter
in which the error covariance matrix and, therefore, the gain can be computed
off-line.

With this choice of nominal, the minimum mean-square estimate is seen

to be

K1 ™ B @0 ¥ K B ™ B G (4.19)

where Kk +1 is defined by (4. 16) and

g = R
S T hen &

The Pk +1 in (4.18) can be written in a form that is more computationally
attractive. Let
L Df

Prt1 = 1'<+1 Hk+1Rk+1Hk+1]

By a matrix inversion lemma, this is equal to

L .
Pert = Pl ” +1H'k+1(H'k+1 k+1Hk+1 k+1 Hk+1 k+1
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With this definition, (4.18) becomes
m

L i L
Prsr = Prall- 2 I+ k1) Pic 1!
i=1

-1

When the second order terms are not present, this becomes

and we note that Pkﬁl is the error covariance matrix of the Kalman filter.
4.2.3 Conclusions

The preceding development has produced several interesting results.

1) Linearization of the nonlinear plant and measurement equations
about some nominal does not provide the most general form for
the mean and covariance of a gaussian conditional probability
density function p(}_gk/ gk) .

2) Expansion of the nonlinear plant and measurement equations about
arbitrary nominal values subject to the constraint that the density
p()_ck/ g_k) must be gaussian produces mean and covariance that
depend upon the second order terms of the expansions. In con-
trast with the Kalman filter, the covariance depends upon the
measurement data.

3) If for each k the plant equation ik is expanded about the conditional
mean g k-1’ all second order terms from the plant equation are
eliminated in the relation for g{':k The covariance still depends

upon the measurement data and contains second order terms of

the measurement equation.
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4) The defining relation for the conditional variance Pk+1 contains
negative terms that could destroy the positive- (or non-negative-)
definiteness property required for this matrix. If such a situation
were to arise, it would suggest that the nominal values were no
longer an adequate reference and would suggest that a nongaussian
conditional density function is required.

The disadvantages inherent in these results arise primarily through the
increased number of computations that must be performed on-line. That is, if
the minimum mean-square estimate provided by % +1 in (4.20) is used, the
error covariance matrix must be computed during the operation of the system
described by (I-N) and (II-N). In the Kalman filter, this matrix does not depend
upon the measurements, so it can be computed in advance if the nominal has
been specified. Also, if the estimate is treated as the nominal, it is necessary
to compute all system matrices on-line since the Fk’ H‘k’ and J:{ +1 are all
computed using the nominal values. Thus, the computational load is greatly
increased if this formulation is to be implemented. Additional remarks regard-
ing the nonlinear filter of Section 4.1 are found in Chapters 5 and 7.

4.3 ON THE CONTROL OF A LINEAR PLANT USING NONLINEAR
MEASUREMENT DATA

In this section, no formal results are to be exhibited. Rather, the filter

derived in Section 4.1 will be utilized to suggest that the Separation Principle

of Section 3.2 cannot be extended to the situation in which the plant is given by

N A MR N RL N R (I-1)
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and the measurements are described by

= By, @

As in Chapter 3, consider the problem of establishing the control policy
for the system (I-L) - (II-N) that minimizes the quadratic performance index
(IIIC-L) under the constraint on !!k that the a posteriori density remain gaussian
for all k.

For the last stage, the function "—{\I is easily seen to be (re: equation

3. 40)

_ T
2y = —N-1 N, N-1 WXQN,N—IEN-I + 2§N-1 N, N-1""§1N N-13N-1

T
+EN-1(WN 10N, N-1 V‘;(NF N, N-12y-1 Hirace [WXQ (4.21)

The control that minimizes E| %\I/EN-I] is

(o] ~
U-1 = AN N-1ENer (4.22)

where AN is defined by (3.42). In this case the estimate is not given by the

Kalman filter equations. It follows from Section 4.1 and the fact that the EN-Z

is known that

= ¢

AN-1 T N-1,N-22N-2 T BNo1Byog T H

N-1"N-1, N-2X N-2)

- K BN N-1, N-2YN-2 (4.23)
where
T -1
KN-1 = PN-IHN-IRN-I
-1 _ o, T -1 ) z i i
PN-1 PN- + B BN IN-1YN-1

i=1
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T
' = +
PN—l QN-l, N—2PN-2§N-1, N-2 QN-l

Thus, the Separation Principle is valid for a single-stage problem.

Unfortunately, it does not appear to be possible to extend this to multi-stage
problems. We shall consider a two-stage problem and indicate the reason for
the added difficulty. No attempt will be made to derive the control law for this
problem.
. . o .
As in (3.43) of Section 3.2, the ,2/ N can be written as

T T

-0
- 5 I
#n = Eoifn, N-1 NN, N-1EN-1
+ I AS
213N, N-1'N N, N-1"N° N, N-12N-1

+ trace (W)I\(I QN—l) (4.24)
From ;7.7-&_1 according to (V)

1

1l

(o]
I# NI " VAR L AV TSN

T T

= i +
X-13N, N-1'NN, N-1EN-p T trace (w)I\(IQN—l)
T. T -
' A
+ x5 18N, N-1TN N, N-1 NG, N1

82y g ~ By PN 0NN (4.25)
In contrast with the linear filter, the term involving zN-l does contribute
to the control. To verify this, we shall perform the integration of (4.25) with

respect to z

No1- Then, as indicated in the formation of—,ﬂN_1 in (V ), one

must integrate with respect to x, After these two integrations are performed,

N-1°

the error can be written as
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= Q + -
X1 - o1, N-2®n-2 T EnealByog Yy g

(@ +T

N-1, N-22N-2 T N-1, N-28n-2) ] ~ ¥ (4. 26)
As has been indicated in Section (4. 1), the EN is approximately

2

By T eyt VR (2.27)
where
xT dJ . X ]
=N-1 N-1-N-1
vih o ;

X T J mx
L_N_l N-1-N-1

=

Introducing (4.27) into (4.26), one obtains

~

_ ~ 2
21 = ¥N-1, N-2EN-2 + vhHvyg

+
K-11N-1EN-1 N-1

- X +T -
H1Cne1, N-22N-2 TP Nen, N-2Bn-2) ] " B

But XNo1 is described by (I-L) so this becomes

= (I-K_ H w ) +K

. 2
N-198-1 -1, N-22n-2 ™ .1V B*K

AN-1 N-1¥N-1

N
At this juncture, let us recall that in the linear problem, the V 211_ would
be identically zero and the gain KN— 1 is independent of the measurements.

Thus, as was stated in Chapter 3, the term involvingg

N-1 does not contribute

to the control policy. It is this fact that permits the proof of the Separation

Principle for linear systems. It is clear from (4.15) and (XV) that KN 1

depends upon the measurement data z_. and must, therefore, contain the

N-1
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2
Furthermore, the vy h depends upon x,

N-1’ B° from (I-L), it

control Uy of

musf be true that ¢ 211_ must contain LI
The Vz_}l and the KN- 1 do not allow the term involving EN- 1 in (4.25) to

be neglected in determining the control policy. This was necessary in estab-

lishing the Separation Principle in Section 3.2. Of course, if one were to con-

tinue the derivation, it might be found that the control is unaffected by these

terms, but this would be surprising.
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CHAPTER FIVE
FILTERING FOR NAVIGATION OF A SPACECRAFT
Several of the results of Chapters 3 and 4 are applied to the problem of
estimating the state of a spacecraft. The linear filter of Chapter 3 is utilized
for the greater part of the study contained in this chapter. In many cases,

linear perturbation theory is found to adequately describe the physical system,

so one would expect the linear filter to perform "satisfactorily”. Occasions do
arise, however, when the nonlinear effects seriously affect and sometimes

even destroy the validity of the output of the linear filter. It is the intent in

this chapter to illustrate both of these situations. Then, several techniques

are investigated which allow the range of applicability of linear theory to be

considerably extended. Finally, the nonlinear filter of Chapter 4 is applied to

the problem to illustrate the effect of including nonlinear terms. These results,
unfortunately, are of a somewhat disappointing nature. ‘
The basic problem and the mathematical model are discussed in Section

5.1. The numerical results obtained from the digital computer simulation of

the problem are presented in Section 5.2. The conclusions that can be drawn

5.1 THE SPACE NAVIGATION PROBLEM

The objective in this chapter is to consider the applicability of perturba-
tive techniques to a significant nonlinear problem. In particular, the problem
of estimating the position and velocity (i.e., the state) of a spacecraft moving

from these results are presented in Section 5. 3.
in a nearly circular orbit about the Earth is studied. The estimates are to be

based upon the measurements provided by a horizon sensor aboard the craft.
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Several different estimation policies are utilized, although the linear
filter described by (XI) provides the basic configuration. The policies are
listed and described below. Before discussing them, the basic mathematical
model shall be presented. A more detailed discussion can be found in
Appendix B.

5.1.1 The Mathematical Model

For this study, the Earth shall be assumed to be spherical with radius r

and to have a spherical gravity potential U described by
-
v R

The M is a constant equal to the product of the mass of the Earth and the uni-
versal gravitational constant. Let R be the distance from the center of the
Earth to the spacecraft.

A coordinate system is defined to be a nonrotating cartesian system with
origin at the center of the Earth. The coordinate axes shall be denoted by X, Y,
7Z. The motion shall be assumed to occur, primarily, in the X-Y plane. In
this system, the equations of motion for the spacecraft are known to be

E=-5R (5.1)

In order to use state vector notation, (5.1) must be reduced to a first order
differential equation. This is accomplished by defining the state x to be the
six-dimensional vector formed from the components of the position R and

velocity V vectors.
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— - _ .
X X
1
R Y X2
Df Df Z - X
X = = . = 3
v ) %4
s
Z
| % %6 _
Then, the state is seen to evolve according to
- — -
R \A
x = - > i (5.2)
v - —R
R3

For this system we shall assume that the plant does not contain any noise, so
(5. 2) provides the specific form for the plant equation (I) to be considered in
this example.

The position and velocity of the spacecraft are to be estimated using the
angular measurements from a horizon sensor. This instrument is assumed
to measure:

(1) the direction of the local vertical relative to the X-axis of the

coordinate system. The direction is specified by the two angles
a and 6, where « is the angle between the X-Y plane and the line
of sight and § is the angle between the X-axis and the projection
of the line of sight onto the X-Y plane.

(2) the subtended Earth angle 8. The B is defined as the angle between

the line of sight to the edge of the planet and the local vertical.
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These angles are depicted in Figure B-1 of Appendix B and are given by

a = -sin-li(}' \
R
X
6 = sin 1 -(;{—?:——}%)175 \ (5.3)
- ro
B = sin R /
Let
l’ o
heo 20 | o (5.4)
r

Assume the measurements contain an additive, gaussian white noise sequence.
Then, (5.4) completes the definition of the measurement equation (II-N) for
this example.

The nonlinear equations (5.2) and (5.4) must be expanded in Taylor series
relative to some choice of nominal values for the state. To apply the Kalman
filter of Chapter 3, the system must be reduced to a linear model, whereas
second order terms are required for the filter of Chapter 4. Assume that the
required nominal x* exists and expand (5.2) and (5.3) in a Taylor series. In

this chapter the plant equation will always be assumed to be linear, so one gets

6x = Fox (5.5)
where F is the matrix containing the partial derivatives of f with respect to

X. Let
bt
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The solution of (5.5) is known to have the form [3]

0% = Y 119% (5-6)
where Qk,k—l is the state transition matrix and is the solution of
3 = Fg
with initial condition
@(to,to) =1

For the dynamical system (5. 2), it is possible to obtain ¢ in a closed form [55].
The solution is presented in Appendix B. Equation (5.6) will serve as the plant
equation for the perturbed state. Note again that no noise appears in this
relation.

The first and second order partial derivatives of a, 6, and 8 are formed
in a straightforward manner. They are presented in Appendix B. In many
instances, the partial derivatives are very difficult to determine analytically
because of the complicated nature of the equations. Wengert [47] has sug-
gested a procedure for determining these derivatives in terms of elementary
functions that seems to be quite reasonable. Wilkins [48] applied this approach
to a complicated system and concluded that the method was very satisfactory.
We mention this work because it appears to be a necessary consideration for
the development of a practical nonlinear perturbation theory.

5,1.2 The Estimation Policies

Most of the results presented in the next section are based upon the
linear filter described by Lemma 3.1 of Chapter 3. Five different policies are

examined using the linear filter. Two additional policies are investigated using
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the nonlinear filter described by Lemma 4.1 of Chapter 4. Each of the policies

is discussed in the detail deemed necessary in the succeeding paragraphs.

(L-1)

(L-2)

Linear filter with a prespecified nominal

The linearization is performed relative to a circular orbit at a
100 n. mile altitude. This nominal is used throughout the flight
and the filter equations (XI) are utilized.

Linear filter using X as the nominal state at each 1;k

k-1

It was observed in Section 4.2 that the most appropriate choice
of nominal at each sampling time tk is the estimate ik-l' Thus,

at every sampling time, the nominal is selected to be

A

K1 = R T 5& ) eE
The linearization is accomplished relative to this nominal, and (XI)
is again utilized. In this case, observe that

6% _, = 0

after the change of nominal has been completed. This procedure
shall be referred to as rectification.
Rectification has a disadvantage in that all of the system matrices
(i.e., Qk,k- 1’ Hk’ etc.) must be recomputed at each sampling time.
If a prespecified nominal is used, the system can be computed and
stored prior to the actual realization of the system. In fact, the
error covariance matrix Pk and the gain matrix Kk can also be pre-

computed. This results in a considerable reduction of on-line

computation. On the other hand, the additional on-line computation
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does not represent a significant restriction in many cases, so
rectification provides a very sensible means of extending linear
theory.

Two means of extending the linear theory without resorting to orbit
rectification are suggested. The first can be applied to systems
containing plant noise as well as measurement noise. The second
policy is restricted to systems with noise-free plants. More details
regarding these policies follow immediately.

(L-3) Modified Observation Matrix H.k

The approach used in establishing this policy shall be discussed in
somewhat greater detail in Chapter 6. For the moment, consider

the measurements to be described by (II-N).

= B+ @y
Assuming a nominal, expand Lx_k in a Taylor series and retain the

first and second order terms. The ith component.is given by

53, 2 7y - )
n i n 2i
=Zi-5’i 22 hko:{(aka (5.7)
j=109% j=1/¢= 13’4{3

th

As has been noted, the i*" row of the observation matrix Hy is

composed of the partial derivatives ahli(/ 8)4(. (Naturally, all of the

partial derivatives are evaluated with the nominal values 51’:.)
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In approximating gk by H.ké . it is clear that the second order
(and higher) terms are neglected. But this can be circumvented
to a certain extent through the following artifice. Consider the
predicted estimate of 6 X (i.e., E[6 §k/¢5 _Z_k-lj). This estimate
depends upon 6 ’%-1 and the plant equations. If the plant is linear,

then

L ] - A
0% = ¥ 11%%1
As long as the error in this estimate is small compared to the

estimate itself, (5.7) can be approximated by
n ah]i( n 3 h]I(
i . —_— — A_/l j + i
0z, =~ - + > : ) xk 6 xi( Vi (5.8)

In (5.8), the & 551(' has been substituted for the state perturba-
tions 6 X The relationship between the measurements and the
state is linear, but it contains the second order partial derivatives.

The elements of the observation matrix are redefined as

i n 21
i _ i Sy

HSY = — + o 6x¢ (5.9)

/
ar{( /=1 axkaxi(

This modified observation matrix is used in conjunction with the
linear filter and prespecified nominal described in Case (L-1),
and constitutes the third policy. Note that if rectification is
utilized, the predicted estimate is identically zero and Hk is

reduced to the first order terms.
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(L-4)

Re-estimation of the initial state

Since there is no noise in the plant, a smoothed estimate of the
initial state deviation can be easily determined from & gk In

particular, assuming that

6%{ B §k,o‘szwo
it follows that
6% = E[6x /6zk]
“o/k =o'V =
= @o’ka% (5. 10)

where 6 3k is the estimate provided by the linear filter equations.
Using the smoothed estimate § 2_0 /k and the true equations of motion,
one can determine an estimate of the current deviation that elimi-
nates the errors that accrue through the linear approximation of the
plant behavior. To determine this estimate, let go /k be the estimate

of the initial state

X = x¥4+§X

Lok T T 0%
Then, the estimate of the current state can be computed as

Z’ék B f-k@o/k)
The gk needs to be computed only when it is actually required
(e.g., when a guidance maneuver is to be introduced that is based
upon J'Ek or égk = >_'Ek - gﬁ"‘{‘) For this policy the nominal is pre-

specified.
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(L-5) Rectification using a smoothed estimate

It is possible at each sampling time tk to form a smoothed estimate

éik 1/k using (3-28). One would expect that this estimate would

generally be superior to § %{_1 since it is based upon more data.

Then, let the nominal state be selected as

* = k - + 2
X1 - &) YOR a
. * - . A . .

The old nominal @51(—1) is computed from 65k-1 as discussed in

Case (L-2). The smoothed estimate is only used to modify the

nominal so the estimatc of the perturbation § %{-1 used in comput-

ing G_Ya{ is set equal to -6 X1 /- This policy essentially doubles

the computational requirements required in Case (L-2).

This completes the definition of the estimation policies that are investigated

ﬁsing the linear filter. Cases (L-1) and (L-2) are repeated using the nonlinear
filter described in Chapter 4.

(N-1) Nonlinear filter with a prespecified nominal

(N-2) Nonlinear filter using ik- ) 28 the nominal state at each tk

These policies describe the basic nature of the numerical investigation.
These cases were investigated for a variety of sampling intervals, instrument
accuracies, deviations in initial conditions, and random noise sequences. The
data that are presented in Section 4.2 are representative of the type of results
that were obtained. In order to most clearly demonstrate the character of the

results, a minimum amount of data has been included.
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Two types of data are presented. Certainly, the error covariance matrix

Pk should describe the effectiveness of the filtering procedure if the model is

accurate. Since we are approximating a nonlinear system, the Pk does not
always reflect the covariance of the error in the estimate, so a Monte Carlo {61]
simulation (i.e., a random number generator is used to simulate the noise in
the measurements) is performed to obtain samples of the actual error in the
estimate. These errors are compared with the semi-axes of the position and
velocity error ellipsoids [10,30] in an effort to determine if the error covari-
ance matrix is a valid measure of the errors.
5.2 NUMERICAL RESULTS

The trajectory that is examined is approximately a circular orbit at
100 n.miles altitude. The constants assumed for the Earth model are [63]

2

M 1.4076539 x 1016 ft3/sec

r

o 20,925,738.0 ft.

The initial conditions for the nominal (i.e., before any measurements) are

designed to give a 100 n. mile circular orbit based on these constants.

21,533,349, 7 0
R = 0 ; V. = | 25,567.728
0 0

The initial conditions for the actual trajectory are unknown, but the deviation
from the nominal is assumed to belong to a gaussian ensemble with mean zero
and prescribed covariance matrix Mo' The Mo is assumed to be diagonal with

the general form
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0'21 0
|4
2
0 ol
v

where 02 and 0‘3 are the variances of the position and velocity deviations,
respectively. The oi and 03 represent parameters that can be varied for the
study and the values that are used will be stated below. These statistics are
used in conjunction with a gaussian random number generator to establish the
initial conditions for the actual trajectory.

The noise corrupting the measurements is also assumed to be gaussian

The R, is treated as having the

and has mean zero and covariance matrix Rk' K

form

o
I

where the oi and oz represent the variance of the noise in the local vertical
and subtendéd angles, respectively. Frequently it will be true that Oi = 02.
The values for these constants will be stated below.

The time interval between measurements provides another parameter for
the study. Several different intervals were considered, but only results relat-
ing to a sampling interval of 10 minutes will be presented. Since the period of
the orbit is approximately 90 minutes, this sampling interval results in meas-

urement data being available at every 40 degrees of subtended arc. The other

intervals that were investigated did not measurably change the conclusions
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suggested by this sample rate. It should be noted that Meditch [49] has shown
that the system is not observable if measurement data are available only at
intervals of 180 degrees of subtended arc.

5.2.1 When Linear Theory is Valid

The Kalman filter has been applied [49-53] to the problem of estimating
the state of a spacecraft for a variety of missions and has, in general, proved
to give satisfactory results. Mendelsohn [54] has discussed a case in which it
has not given satisfactory results, however. Many of these studies have dealt
entirely with the error covariance matrix Pk and have not involved any Monte
Carlo simulation. Such a procedure is entirely justified if the system were
actually linear. But since a nonlinear system is being approximated by a
linear system, the validity of Pk as a measure of the response of the filter
depends heavily upon the accuracy of the approximation. In this paragraph, we
consider a case in which the linear system (5.6) apparently provides a good
approximation to the behavior of the actual trajectory relative to the pre-

specified nominal.

For the remainder of this paragraph, let

o = (5,000 ft)
p
o‘?; = (5 ft/sec)2

The initial conditions for the actual trajectory are selected from an ensemble
described by these statistics. For the data in Table 5.1, the initial deviations

are
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[ -2239
6182

4192
- x* =
() -x*t) =| 3.4

3.5

| -4.0

At any time t _, the deviation should be described approximately by

2N -ék-l ~ Qk,o(Jio B x_;)
if (5.6) is adequate. The error in X~component of position and of velocity are
depicted in Figure 5.1 for five orbital revolutions for one particular set of
initial conditions. This trajectory appears to be representative for the group
that were simulated.

It is clear from Figure 5.1 that the error is oscillatory and has an in-
creasing amplitude. In this case the errors do not appear to be significant,
so one would expect that linear theory is adequate. To see that this intuitive
idea is true, consider the following case.

2 2

_ _ 2
GL = OS = (0.1 degrees)

Sampling interval = 10 minutes
All of the estimation policies described in Section 5. 1.2 were applied to
this configuration. Results for Cases (L-1), (L-2), (N-1) and (N-2) are con-
tained in Table 5.1(a). Cases (L-3), (L-4), and (L-5) are described by
Table 5.1(b). Only two revolutions are studied for Case (L-5) because of the

number of computations that are involved.
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The results in Table 5.1 verify that the linear model is an excellent
approximation. First, observe that the axes* of the error ellipsoids provide an
accurate measure of the error in the estimate. Second, it is clear that the
results are essentially the same for every filter configuration. As a precursor
of things to come, it can be seen that rectification of the nominal does result
in a smaller actual error in many cases, particularly for the last two orbital
revolutions. The error covariance matrix is unaffected, however.

5.2.2 Orbit Rectification to the Rescue

In this paragraph a trajectory is considered for which linear theory
proves to be totally inadequate for the description of the state perturbation.

For this case, the statistics of the initial perturbation are taken to be

g = 50,000 ft.
p
o = 50 ft/sec.
v

Several different sets of initial perturbations were studied. In the results
below, these conditions were

[~ 40058
75488
35676
-29.8

-125.4

3.5 |

x(t) - X*t) =

—

In Figure 5.2 the error in the linear approximation in the X and X compo-
nents is depicted. Note that on the scale used, the errors in Figure 5.1 could

not be distinguished from the axis of abscissas. From the magnitude of these

* The direction of the axis is not exactly in the direction of the coordinate axes
so the magnitudes are listed according to the coordinate axis that is most
closely aligned.
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TABLE 5. 1(a)
Filter Response when the Perturbations are Linear
o =5000ft; 0 =5 1ips
p v

g, = 0’s'= 0.1 degree

L
Prespecified Nominal Rectification

Errorin Axes of Error Errorin Axes of Error

Time | Component Estimate Ellipsoids Estimate Ellipsoids
(L-1) (N-1) (L~} | N-p | (-2 | @2 | (@2 | (N-2
5400 X,ft -5639 | -5639 | 2468 | 2467 | -5608 | -5605 | 2478 | 2478
Y, ft 16082 16069 | 16428 | 16435 | 16071 | 16044 | 16433 | 16446
7, ft 4108 4108 | 4798 | 4798 | 4107 | 4107 | 4798 | 4798
X, fps -20.7 -20.7 | 18.7 | 18.7| -20.7 | -20.7 18.7 | 18.7
Y,fps 0.8 0.8 | 29| 29| o0.8| o.8 2.9 2.9
Z,fps -6.1 -6.1 4.9 4.9] -6.1| -6.1 4.9 4.9
10800 | X,ft -4573 | -4566 | 2078 | 2076 | -4516 | -4505 | 2100 | 2098
Y, ft 3016 2099 | 14645 | 14658 | 2896 | 2858 | 14638 | 14650
Z,ft 2075 2074 | 4599 | 4599| 2073 | 2072 | 4599 | 4600
X, fps -4.3 4,2 | 16,6 | 16.6] -4.1| -4.1 ] 16.6| 16.6
Y, fps 3.4 3.4 2.4 2.5 3.5 3.5 2.5 2.5
Z,fps -7.5 -7.5 4.8 4.8 -1.5] -7.5 4.8 4.8
16200 | X,ft 1457 1463 | 1833 | 1833] 1565 | 1580 1846 | 1845
Y, ft -9920 -9934 | 12735 | 12734 |-10056 |-10090 | 12598 | 12600
Z,ft 1899 1899 | 4405 | 4405| 1898 | 1898 | 4406 | 4406
X, fps 10.0 10.0 | 14.4 | 14.4] 10.2] 10.2 14.3 | 14.3
Y, fps 7.4 7.4 2.2 2.2 7.5 7.5 2.2 2.2
Z,fps -6.8 -6.8 4.7 4.7 -6.8| -6.8 4.7 4.7
21600 X,ft -1696 -1695 | 1661 | 1660 | -1187 | -1180 1665 | 1665
Y, ft 2258 2251 | 11322 | 11316 | 1625 | 1618 | 11214 | 11211
Z,ft 497 497 | 4218 | 4219 496 496 | 4219 | 4220
X,fps -1.0 -1,0 | 12.8 | 12.8| -0.2| -0.2 12.7 | 12.7
Y,fps -0.2 -0.2 2.0 2.0 0.3 0.3 2.0 2.0
z,fps -7.3 -7.3 4.7 4.7 -7.3]| -7.3 4.7 4.7
27000| X,ft -3442 | -3445 | 1530 | 1530| -2603 | -2559 1535 | 1535
Y, ft 3800 3801 | 10262 | 10246 | 3000 | 2995 | 10346 | 10346
Z,ft 1392 1393 | 4042 | 4043| 1397 | 1392 | 4044 | 4044
X, fps -3.3 -3.3 | 11.6 | 11.6| -2.3| -2.3 1.7 11.7
Y,fps -2.0 -2.0 1.8 1.8] -1,1]| -1.1 1.8 1.8
Z,fps -7.7 -1.1 4.7 4.6| -7.7) -7.7 4.7 4.7
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TABLE 5. 1(b)

Filter Response when the Perturbations are Linear
o =5000ft; 0 =5 fps
p v

o, = O'S = (0.1 degree

L
Prespecified Nominal Rectification
Time Component Error in Estimate Axes Error | Axes
Initial | Current of in of Error
State State |Error Ellipsoid |Estimate|Ellipsoid
(L-3) (L-4) (L-3) (L-4) (L-5) | (L-5)
5400 X, ft -5634 | -3438 | -5623 | 2468 | 2468 -5585 | 2468
X, ft 16062 | 4281 | 16087 | 16422 | 16428 16072 | 16432
Z, ft 4109 | 4734 | 4110 | 4798 | 4798 4108 | 4799
X, fps | -20.7 1.8 | -20.8 | 18.7 | 18.7 -20.7 | 18.7
Y, fps 0.8 3.3 0.7 2.9 2.9 0.7 2.9
7, fps -6.1] -5.4| -6.1 4.9 4.9 -6.1 4.9
10800 X, ft -4576 | -3860 | -4558 | 2079 | 2078 -4485 | 2090
Y, ft 3019 | 5165 | 3015 | 14635 | 14645 2852 | 14629
Z, ft 2075 | 3605 | 2076 | 4599 | 4599 2072 | 4600
X, fps -4.3 2.1| -4.3 | 16.6 | 16.6 -4.0 | 16.6
Y, fps 3.4 4.7 3.4 2.5 2.4 3.5 2.5
Z, fps 7.5 -6.5] -7.5 4.8 4.8 -1.5 4.8
16200 X, ft 1461 | -2206 | 1467 | 1834 | 1833
Y, ft -9943 | 4628 | -9905 | 12728 | 12735
Z, ft 1899 | 2917 | 1900 | 4405 | 4405 No
X, fps 10.0 1.5 | 10.0 | 14.4 | 14.4 Data
Y, fps 7.4 3.1 7.4 2.2 2.2
7, fps -6.8| -5.4| -6.8 4.7 4.7
21600 X, ft -1679 | -1229 | -1656 | 1661 | 1661
Y, ft 2220 | 5587 | 2252 | 11316 | 11322
z, ft 498 | 3474 499 | 4218 | 4218 No
X, fps -1.0 3.0| -1.0 | 12.8 | 12.8 Data
Y, fps -0.1 1.5 | -0.2 2.0 2.0
Z, fps -7.3| -6.1| -7.3 4.7 4.7
27000 X, ft -3354 | -1418 | -3433 | 1531 | 1530
Y, ft 3675 | 5499 | 3806 | 10256 | 10262
Z, ft 1392 | 3397 | 1396 | 4042 | 4042 No
X, fps -3.2 2.8| -3.3 | 11.6 | 11.6 Data
Y, fps -1.9 1.7 -2.0 1.8 1.8
2, fps 1.7 -s.1| -1.7 4.6 4.7
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errors, one would suspect that a linear estimation theory could not provide
satisfactory results. As shall be shown, this suspicion is entirely valid for
the case in which the original nominal is retained throughout the duration of
the flight. However, rectification of the nominal provides a striking improve-
ment in the accuracy of the estimates. Once again, consider the following
cases
O'L = 0: = (0.1 degrees)2
Sampling interval = 10 minutes
Results for cases (L-1), (L-2), (N-1), (N-2) are stated in Table 5. 2(a).
It is interesting to examine these data in more detail. First, the error in the
estimate for Case (L-1) becomes intolerable and at no time does the error
ellipsoid describe the error. This disparity is a manifestation of the nonlinear
effects upon the estimated procedure. The error in the estimate during the
second and third orbits has a remarkable correlation with the error in the
linear approximation. For example, the error in the linear approximation of
16200 seconds is
[ -259,423 ]
-196,697
-2,262
226.6

-304.1
-6.5

[x(16,200) - x*(16,200)] - ¥(16, 200, 0)6_}50 =

Comparing this with the error in the estimate given in Table 5.2(a), one
observes that the error can be attributed almost entirely to the linear approxi-
mation error. This is important when considering the effects of the estimation

policy (L-4).
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When the nonlinear filter (i.e., Case (N-1) ) is used, an improvement in
the estimate is obtained, particularly during the first orbit. It is apparent that
the general behavior of the filter is not greatly affected and that it is the non-
linearities arising in the dynamics that are completely dominant. Again, the
error covariance matrix does not provide a valid measure of the actual error
in the estimate.

The most significant result appears when examining the effect of rectify-~
ing the nominal at each sampling time. For this case, the error in the estima te
is greatly reduced compared with Cases (L-1) and (N-1) and does, in fact,
correspond with the errors predicted by the error covariance matrix. It is
also seen that the error covariance matrix does not appear to be significantly
different from the values obtained for the preceding cases.

The introduction of the nonlinear filter has an unexpected effect upon the
estimate judging by the tabulated data. In almost every instance, in the table,
the error in the estimate is larger although the error covariance matrix is not
affected to any great extent. These results suggest a problem that is consid-
ered in more detail in Chapter 7. However, the tabulated data are somewhat
misleading. For example, an examination of the error in the estimate of the
X component of position for the first ten observations indicates that the non-
linear filter provides a more accurate estimate at about half of the observation
times (six out of ten). This is typical of the response that is observed for all
components of the state vector and leads one to conclude that the nonlinear

term does not provide any appreciable benefit.

97



TABLE 5. 2(a)

= 50,000 ft =
O'p ’ 3 Ov 50 fps

(]

= Os = 0.1 degree

Filter Response when a Prespecified Nominal is Inadequate

L
Prespecified Nominal Rectification
Time |Component Errorin Axes of Error Errorin Axes of Error
. Estimate Ellipsoids Estimate Ellipsoids
(L-1) (N-1) | (L-1) (L-2) | (N-2) (L-2) | (n-2)
5400{ X,ft -36783| -34569 4352 6028 | 7420 4038 | 4034
Y, ft -52744| -38406] 18118 -1898 | -3176| 17306 | 17284
Z,ft 10599 9398 16562 10499 | 10597] 16507 | 16603
X, fps 59.9 50.8] 20.1 3.9 7.0 19.5 | 19.5
Y,fps -23.7 -30.9 4.7 -4.8| -5.2 4.2 4.2
Z,fps -24.8 -24.2l 19.6 -23.4| -23.5 19.5 ) 19.5
10800 X,ft -137029| -136329] 2852 2078 | 2742 2528 | 2528
Y, ft -93000f -85475| 15504 -3730 | -4276| 15099 | 15113
Z,ft 18163 16819 12034 18521 | 18615| 11991 | 12013
X, fps 106.9] 103.4] 17.5 2.1 3.6 17.2 | 17.2
Y, fps -123.2| -127.8 3.3 0.5 0.6 2.8 2.8
Z,fps -19.6 -19.2| 14.4 -17.8 ] -17.8 14.4 | 14.4
16200] X,ft -275523| -275099f 2271 10845 | 11244 1989 | 1987
Y, ft -194631| -188665| 13620 -14723 | -14884 | 13264 | 13280
Z,ft 8883 8553] 9915 9490 | 9517 9873 | 9890
X, fps 228.5 226.4| 15.5 16.5| 17.2 15.1 | 15.1
Y,fps -284.2| -288.3] 2.6 8.9 9.1 2.3 2.3
Z,1ps -13.6 -14.1] 11.9 -11.3 | -11.4 11.9 | 11.9
21600 X,ft -7.x108] -6.x106| 1946 7128 | 7348 1700 | 11983
Y, ft 11.x108| 10.x108] 12210 -8310 | -8281| 11961 | 1699
Z,ft 4871 5401 8625 6108 | 6110 8588 | 8600
X, fps -12653| -11391] 13.9 8.8 9.3 13.7 | 13.7
Y, fps ~-8068 -7767 2.3 9.1 9.0 2.0 2.0
Z,fps -14.5 -14.9| 10.4 -11.7 | -11.7 10.4 | 10.4
27000 X -11.x106 | -11,x106| 1732 -3567 | -3357 | 11138 | 11142
Y 14.x10%| 14.x108]| 11131 987 | 1055 1518 | 1519
Z 4998 5300| 7736 7067 | 17055 7709 | 7704
X -16318 | -15027| 12.7 -3.3| -3.0 1.8 1.8
Y -14123| -13717 2.0 -1.7| -1.6 12.8 | 12.8
Z -7.2 -8.4 9.3 -4,1| -4.1 9.4 9.4
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Filter Response when a Prespecified Nominal is Inadequate
0’p = 50,000 ft; Ov =50 fps

TABLE 5, 2(b)

UL = 05 = 0.1 degree
Prespecified Nominal Rectification
Time [Component Error in Estimate Axes Error Axes
Initial Current of in _|of Error
State State Error Ellipsoid] Estimate| Ellipsoid
(L-3) (L-4) (L-49) | (L-4)| (L-5) | (L-5):
5400 X, ft 126 7280 2618 | 4233 | 4352 | 5189 | 4058
Y, ft -85954 | -42255 24762 | 18534 | 18118 | -1129 |17345
z, ft 10876 | -13085 | - -9605 | 16511 | 16562 | 10541 | 16520
X, fps 94.0 51.3 -27.7 | 20.6 | 20.1 1.8 | 19.4
¥, fps -55.4| -13.0 -18.5 4.5 4.7 | -5.7 4.3
Z, fps -24.8 20.7 14.5 | 19,5 | 19.6 | -23.5 | 19.6
10800 | X, ft -63848 | 16695 11685 | 2730 | 2852 | 1653 | 2556
Y, ft -202314 | -49084 9309 | 16115 | 15504 | -3398 |15085
Z, ft 18615 | -21664 { -17514 | 11997 | 12034 | 18578 |[11995
X, fps 222.6 55.1 -9.1 | 18.2 | 17.5 1.2 | 17.1
Y, fps -139.2 -21.8 -24.0 3.1 3.3 0.5 2.9
Z, fps -19.6 8.8 17.3 | 14.4 | 14.4 | -17.8 | 14.4
16200 | X, ft 218704 | 18586 12733 | 2159 | 2271
Y, ft -235101 | -55435 80 | 14009 | 13620
zZ, ft 9876 | -12567 -10006 | 9884 | 9915 No
X, fps 252.1 55.8 -4.3 | 15.9 | 15.5 Data
Y, fps -319.9| -23.3 -19.6 2.5 2.6
7, fps -13.8 1.6 9.1 | 11.9 | 11.9
21600 | X, ft -6x106| 4x10% | 33x106 | 1852 | 1946
Y, ft 11 x 106 | 36 x 106 | 34 x 108 | 11564 | 12210
z, ft 8294 | -10529 | -51634 | 8601 | 8625 No
X, fps -12135| -4978 | 35x 103 | 13.2 | 13.9 Data
Y, fps -7754 -227 | 32x 103 2.2 2.3
Z, fps -15.3 0.4 40.1 | 10.4 | 10.4
27000 | X, ft |-11x10%| 5x10% {-37x10® | 1672 | 1732
Y, ft 13x10% [ 13x 106 | -9x 108 | 9746 | 11132
zZ, ft 9545 | -8284 | -54342 | 7725 | 17736 No
X, fps -13809 [ -5x 103 | 9x103 | 11.1 | 12.7 Data
Y, fps -12500 -239 |-38 x 103 2.0 2.0
Z, fps -10.0 -9.5 29.1 9.3 9.3
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The effects of introducing estimation policies (L-3), (L-4) and (L~5) are
described in Table 5.2(b). The modification of the observation matrix does not
improve the filter behavior according to the data in the tabulation. These data
are somewhat misleading because a reduction of the error is actually observed
during most of the first orbital revolution. However, the nonlinear plant effects
become significant and prevent policy (L-3) from providing a significant
improvement.

Estimation policy (L-4) is observed to provide a significant improvement
in the estimate of 6§k until 21,600 seconds (i.e., through the first four revolu-
tions). It was observed that the accuracy of the estimate deteriorates catastro-
phically at the end of the fourth revolution. The reason for the sudden deteriora-
tion is difficult to explain. The estimate of the initial state is well-behaved
until this time, although the error is surprisingly large when compared with
the error in the estimate of the current state that is obtained directly from it.
It is significant that the error covariance matrix provides a reasonably accurate
description of the actual error in the estimate prior to 21,600 seconds. This
policy appears to be worthy of further consideration.

Only two revolutions of the trajectory were studied for the smoothing
policy (L-5) because of the computational load involved. Use of the smoothed
estimate to establish the nominal appears to reduce, generally, the error
resulting from policy (L-2). The error covariance matrix is not significantly

changed, however, so the improvement would appear to be negligible.
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5.3 CONCLUSIONS OF THE COMPUTATIONAL STUDY

Several estimation policies have been employed in order to determine the

state of a spacecraft moving in nearly circular orbit around the Earth. A

variety of trajectories and instrument configurations were examined in con-

junction with these policies and the results suggest the conclusions that follow.

(1)

()

(3)

Rectification of the nominal at each sampling time allows a striking
and significant extension of the linear theory to cases that suggest
the need for more sophisticated filtering techniques when the
nominal is restricted to be prespecified.

When there is no plant noise, continual estimation of the initial
state and the subsequent use of this estimate in conjunction with
the nonlinear plant equation provides a significant improvement in
the estimate of the current state over the linear estimate. With
this policy, the nominal is prespecified so the number of on-line
computations that must be performed is significantly reduced.
The nonlinear filter of Chapter 4 provides no useful improvement

over the results obtained with a linear filter.

Other conclusions are suggested by the results but not as vividly as the preced-

ing three.

Some of these aspects (e.g., Case (L-3) is reconsidered) will be

discussed in Chapter 7.
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CHAPTER SIX

APPROXIMATION OF THE A POSTERIORI DENSITY
FUNCTION FOR NONLINEAR SYSTEMS

It has been pointed out earlier that knowledge of the a posteriori density
p(gk/ _z_k) provides all of the information required to solve the estimation and
control problems. It has also been stated that, in general, it is not possible
to determine p(gk/_z_k) in a convenient, analytical form from the recurrence
relation (IV) that describes the behavior of the density from one sampling time
to the next. In this chapter, an approach is presented that provides an approxi-
mation of the true density function when p(ﬁk/gk) is nearly gaussian.

In Section 6.1, the general procedure is discussed and the means by which
this procedure is implemented is described. Attention is restricted primarily
to the estimation problem but the means of extending this approach to include
control terms is described. Relations defining the approximate conditional
density are stated in Section 6.2 for a scalar, second order system. Although
a scalar system is considered, the relations can be generalized to the multi-
variable case without additional conceptual difficulties. The notation required
to describe the relations becomes considerably more cumbersome, however.
The approximate density function for this system provides insight into the
effect of nonlinear terms on the character of the density. These aspects are
also discussed.

A means of extending the existing linear theory is discussed in Section

6.3. This discussion is related to estimation policy (L-3) of Chapter 5 and
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deals with an unsophisticated means for improving the behavior of the Kalman
filter. This technique is exercised in the numerical examples contained in
Chapter 7.
6.1 THE APPROXIMATION PROCEDURE

The procedure that is proposed here is a generalization of the technique
that is commonly used in applying linear estimation and control policies to
nonlinear systems and was stated earlier in Section 1.3. Suppose that it is

desired to estimate the state of the nonlinear, scalar system

e = ) F Wi 6.1

from measurements described by

z, = h.k(xk) + Vi 6.2)
The W 1 and v, are assumed to be samples from gaussian sequences with
known statistics.
To determine the a posteriori density function for this system, the
following procedure is suggested.
(A) Assume that fk and h.k can be written in a Taylor series relative
to some nominal values of the state xl"(‘_l.
To apply linear theory, one must assume that the perturbations
from the nominal can be described by the first order terms of the
Taylor series.
(B) Assume that p(xk/zk) has the same form for every sampling time.

When the system is linear, this requirement is satisfied naturally

because p( /zk) is always gaussian. Densities having this
X ys g
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character have been referred to as being of the "reproducing
type" [56].
(C) Assume either

1) fk and h'k are approximated by a specific number of terms
of the Taylor series expansion

or

(2) Allow the number of terms that are to be retained to be
determined by the form assumed for p(xk/zk).

Then, introduce the expansions of fk and hk’ and the density

functions for the noise sequences into (IV) and establish recur-

rence relations for the moments of p(xk/zk) subject to restrictions

(1) or (2).

The manner in which (C) is accomplished depends on the form of the
density assumed in (B). For example, in Chapter 4, p(_}%(/gk) was assumed
to be gaussian. Then, recurrence relations for the mean )_'i_k and the covariance
Pk were derived under the restriction that only the terms of the Taylor series
that permitted the gaussian assumption to be satisfied precisely were to be
retained. This procedure led to a generalization of the Kalman filter. In
Section 6.2, a gaussian approximation is derived that is different than that of
Chapter 4. The differences between the two formulations are seen in Chapter
7 to give significantly different numerical results and to point out the need for

caution in the manner in which the approximation is established.
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The form that is selected for the density (in accordance with the require-
ment [B]) is arbitrary. In this discussion, a form is selected that approxi-
mates a density function but is not a true density because the approximation
can sometimes assume negative values. This form has been chosen because
it allows one to make use of the fact that p(xk/ zk) should be approximately
gaussian for many problems of practical interest.

It is possible to write many density functions as a series of orthogonal
polynomials associated with some distribution function [10,37]. When this
distribution function is gaussian, the orthogonal polynomials are the Hermite
and the resulting expansion is referred to as the Gram-Charlier series. An
asymptotic expansion closely related to this is the Edgeworth series [10].
These series will be stated here, but they are discussed in more detail in
Appendix C.

Consider a random variable £ with a known density function, and let x

be the normalized random variable

where m and O are the mean and standard deviation of §. Denote the probability
density for x by f(x) and let ¥(x) represent the gaussian distribution with mean

zero and unit variance. Then, the Gram-Charlier expansion of {(x) is
f(x) = w(x)[1+—1cH(x)+—1cH(x)+ ..... ] (6.3)
3! "33 4! "44 ’

The Hn(x) are the Hermite polynomials [10]. They satisfy the recurrence

relation
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Hn +1(x) = an(x) - an_l(x)

where

H, (x)

]
=

|
¥

H, ()

The coefficients ¢ have been called quasi-moments by Stratonovich [57,58]

and are defined to be

The L.Lk are central moments of £.
The Edgeworth expansion is closely related and is given by

1 10 2
fx) = yxI[1 +3—11-c3H3(x) + I c4H4(x) +a c3H6(x) +....] (6.4)

Only terms containing the fourth central moment and less have been included
in (6. 3) and (6.4). Additional terms are given in Appendix C. Note that the
Edgeworth expansion contains one more term that the Gram-Charlier when the
series is truncated at this point.

The form of p(xk/ zk) required by (B) shall be assumed to be truncations
of the Edgeworth expansion. In Section 6.2 the terms stated explicitly in (6. 4)
are retained. The approximation for fewer terms is obtained immediately

from the general result of that section. The truncation of the expansion shall
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be considered to result in the higher order moments corresponding with the
same order moments of ¥(x). This assumption will be used in the determina-
tion of the prediction density p(xk/ Zk_l) .

The approximation for p(xk/ Zk) using the procedure (A) - (C) is deter-
mined by establishing recurrence relations for the moments appearing in the
truncated Edgeworth expansion. The determination of the relations is dis-
cussed in Section 6. 2.

Attention in this chapter has been restricted to the estimation problem.
Thus, in (6.1) the control variables LN do not appear. If the control problem
were to be considered, the preceding discussion would remain valid. It would
be necessary, however, to assume nominal values for the control and to
obtain the Taylor series for fk in terms of perturbations in both the state and
the control variables. The problem of determining the control law is attacked
by the methods of Section 2.1 and is accomplished after the recurrence
relations for the moments of p(xk/zk) have been determined. The discussion
of Section 4.3 indicates the nature of some of the difficulties that are encoun-
tered in trying to establish the control law. Note that the determination of the
probability density p(xk/zk) immediately provides the solution of the minimum
mean-square estimation problem, whereas knowledge of p(xk/zk) only supplies
the information that is required before solution of the control problem can be

attempted.

108



6.2 THE CONDITIONAL DENSITY FOR A SECOND ORDER SYSTEM
The procedure described in the preceding section shall be utilized to

approximate the a posteriori density for a second order system. Suppose that

one must estimate the state of the system with plant

2
%o = 51 T 8 %-1 V-1 (6-5)
and measurements
2
2 = B e Y (6.6)

These equations have an obvious relation to the Taylor series for a
general, nonlinear system. Thus it has been assumed that the nominal exists
and that (6.5) and (6. 6) represent the Taylor series approximation including
the second order terms. Thus, we have assumed the form for the plant and
measurement equations explicitly. This has been done because it provides a
more definitive model than results from the policy in which only the terms that
permit the desired form for p(xk/zk) to be achieved are retained.

The derivation of the relations describing the moments involves three
basic steps. (This can be reduced to two if the first measurement is not
available until tl, although the statistics for the initial state are prescribed at
to.) In this discussion, a measurement is assumed to be obtained at to’ 80
a relation for p(xo/zo) must be established explicitly as well as general rela-
tions for p(xk/gk_l) and p(xk/zk). Each of the three steps shall be discussed
immediately below and the primary results are stated. A detailed derivation

is given in Appendix D.
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(1) Determination of p(xo/zo)

The initial a posteriori density is obtained from (2. 15)

P(z /% JP(x )

P(xo/z o bz ) (2. 15)

The distribution for the initial state has been assumed to be gaussian. The
conditional density p(zo/xo) is determined from (6.6) and the distribution for

Vk.

2
p(zo/xo) p(zo B hoxo B eoxo)

2

Z -hx -ex

k e 1l _o 00 002
vXp 2" r0 !

Since e, is non-zero, this density is obviously not gaussian. This term
must be approximated in order to obtain a p(xo/ zo) having the form (6.4).
This approximation is accomplished in the following manner. The p(zo/xo)
can be rewritten as

1 zo B hoxo 2
p(Zo/xo) - 1(v exp = E ( r2 )
o

(-2e z x2+ 2h e x3+e2x4)
1 000 000 00
{exp-— 6.7)
2 2
T
o]

For an alternate approach, refer to Chapter 4. Introduce (6.7) and p(xo) into

(2. 15) and rewrite as

A

1 xo §0 2
px /z) =k, exp-3 (T) {exp Bx )} (6.8)
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where kcon represents terms that are independent of X, (including p(zo) ), and

2
1ot o, 1
2 2 2
n r m
o o (o)
hz
~ Df 2 oo a
go TT0(2 + 2)
r m
o) (o)

e -2z x2+2h x3+e x4
B(x)]=)f--—°' 00 00 oo)
o 2 ' 2

r
0

If the measurements were linear, then eo would be identically zero and
éo and ncz) would be the mean and variance of p(xo/zo). Thus, they are a scalar
version of the Kalman filter equations.

It is necessary to determine the moments of p(xo/zo) from (6.8) in order
to put the a posteriori density into the form required by (6.4). This is not
immediately possible because of the last factor. If exp B(xo) can be approxi-
mated by a power series, then it becomes a simple matter to determine the

moments. One could approximate this term by
B =1+B(x)+LB2x) 6.9)
exp B(x ) o tor B (%] (6.

Numerical results indicate that this is not an adequate approximation in many
instances. In this chapter, the B is rewritten in terms of the linear estimate

%o' That is, one sees from the definition of B that it has the form

2 3 4
B(xo) = b2xo + b3xo + b4xo
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It is possible to rewrite this as exp BO exp Bl(no) where Bl(no) is defined to be

B.() = By, +Byne +Byno + B,
and
nO ]:—?f (XO - gO)
Then, the approximation
expB = expB_[1+B () +Bo(n)] (6. 10)

is introduced. The exponential exp Bo does not involve upe so it can be included
in the constant kcon' This approximation proves, not unexpectedly, to provide
better results than are obtained using (6.9). Using (6.10), (6.8) can be

rewritten as
/z) =k e -1(2%21+B( ) + B2 6.11

The moments E['r\:)/zo] (i=0,1,2,3,4) are easily determined from (6. 11).

The central moments of p(xo/zo) are related to these moments according to

E[xo/zo] = io + E[’r]o/zo]

- B{n/z,] - 3BIN /2 Ipp - E [0,/2 ]

112



E[(x, - io)4/zo] D

4 2_2 4
= E -4u E - -
[T\o/zo] W E[n/z 1 - 6p E [n,/z] - E"[n/z ]
From (6.4) the approximation to p(xo/zo) is seen to be

pix/2) =k exp -3 €) 11437 e € ) + 50, H, (€ ) +arelH (C )]

where

The complete definition of this density is contained in Table 6.1 and in
Appendix D, To repeat, the principal approximation involved in determining
p(xo/zo), aside from the general form, occurs in the simplification of exp B.
This approximation reoccurs in the determination of p(xk/zk) from (IV).

(2) Determination of p()ﬁ{/ Zk_l)

The prediction density is determined from (2. 13).

- k-
pe /2 = foex_ /2 oo /x ax (2.13)
Assume that p(xk_l/zk—l) has the form prescribed by (6.4). It follows from

(6.5) and the density for W1 that
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X R e T gkxkz-l)z

i\
-1

ISR

PO /X, _p) = Kk exp - (6.12)

It becomes clear upon a moments reflection that the integration required by
(2. 13) cannot be directly accomplished. Fortunately, this is not necessary.
Because the approximation calls for the moments of p(xk/ zk_l) , con-

gider their direct calculation from (2.13). Fori=1,2,3,4,

BIx/z 1 = [xpex /2 6-1)

Substitute (2. 13) into (6.13) and iterate the integrals. Then

E[x}(/zk_ll = _fp(xk_l/zk_l){J'xikp(xk/:ﬁ{_l)dﬁ{}dﬁ{_l (6.14)

The innermost integration is easily accomplished and produces
E[x /x .1 = rg X
L W
2 2 2 2
El0/%e1) = Gen O X T BN

3 2 2 2 3
E[x/x 4] = 3q_ € X & ) ¥ §X 1 Y EN D

E[’{/ *g-1) 3q§-1 RS gkxlz(—l)quzq—l POt gk"i-ﬂ4

The moments E[xli{/zk_l] are easily determined from (6.14). To this
point, no approximations have been introduced other than the original assump-
tions associated with the form of p(xk_l/zk-l) and with (6.5) and (6.6). In
establishing the E [x:{/ zk—l] , it is found that for this problem, the fifth through

eighth central moments of p(xk_l/zk_l) are required. These have not been

computed (although they could be determined when the first four moments of
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the a posteriori density are established). To approximate these moments, we

assume that they are identical with the gaussian moments. That is, we let

Mg = H, =0
6

Mg = 5P
8

This constitutes the only additional assumption involved in determining
p(xk/zk_l). The equations are summarized in Table 6.1 and Appendix D.

(3) Determination of p(xk/zk)

The p(x.k/zk) is determined from (IV).

p(x, / 2 1)1D(zk/xk)

pex, /2 = ()

Pz, / 2571

The derivation is quite similar to that provided for p(xo/zo) in Section 6. 2. 1.
In that case, p(xo) was gaussian, whereas its counterpart in IV (i.e., the
p(xk/zk_l)) has the Edgeworth form. Thus, the approximation of the factor
exp B(xk) that arises through the nonlinearities in the measurement device is
performed in exactly the same manner. The algebraic manipulations are
more involved in this case because the Hermite polynomials must be rewritten

in terms of the centered variable

bt , _¢
% T %%
where %,k is the linear estimate. For the details of the derivation, the reader

is referred to Appendix D. The general relations that result are stated in

Table 6. 1.
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The moment relations for simpler density approximations are obtained
without difficulty from the tabulated equations. In fact, one obtains another /‘
gaussian, but nonlinear, filter directly by eliminating all of the terms that are
associated with the Hermite polynomials H3, H 4 and H6' This gaussian filter
is distinctly different from that of Chapter 4 and shall be seen to give different
(and more satisfactory) results in Chapter 7.

It is hoped that the discussion has been sufficiently clear to indicate the
ease with which more terms in the Edgeworth series or in the power series

approximation of exp B_ could be included. This system illustrates all of the

1

problems that would be encountered in including additional terms in the

expansions.

The relations in Table 6.1 that describe the calculation of the central

moments of a posteriori densities can be described in general by two terms.

}

The first term represents the moments associated with the linear moments

§k and nlz{. To these moments are added perturbation terms that account for

the nonlinearities. It may not be immediately obvious that this is the case for
- . k-1 .
p(x /z ) and p(xk/zk), but it is more readily seen for p(xk/z ). Itis
oo
particularly interesting to note the effect of plant nonlinearities on the sym-

metry of the distribution. For the sake of discussion, suppose that p(xk_l/zk—l)

Then, the

is gaussian so that M, -1 is 3p§_1.

-1 is identically zero and v

uk /k-1 has the form

_ 4 2. 4 3 4 2 6
Mek-1 = 8 t12«“%'19?’1«1 + 338 8 X _1Pr-1 V& B4R 1% T 2Py
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Naturally, if the plant is linear, then 8 is identically zero and so

My fk-1 - 0.
However, when &, is non-zero, it is clear that “k /k-1 in general will be non-
zero thereby reflecting the loss of symmetry of the distribution. The sym-
metry of p(xk/zk) is also destroyed in general by nonlinear measurement
terms. The approximation of the a posteriori density by a gaussian distribu-
tion (e.g., in the case of the Kalman filter) might be suspected of resulting in
a mean value that is biased away from the true mean because of the unsym-
metric nature of the true density. This is seen to indeed to the case in some
of the numerical results of the next chapter.

It should also be noted that the central moments plz{, Mo, \)k all depend
upon the measurement data because the term Bl('q k) contains the data explicitly
in the coefficients. This would have to be taken into account in the derivation
of optimal control policies using this density approximation.

Relations defining the moments of the a posteriori density, particularly
for p(xk/zk) , can be determined using different approximation techniques. It
has already been noted that the exp B(xk) can be written immediately in a power
series in X rather than first rewriting it in terms of the centered variable T
It is not surprising that the former does not give as good an approximation for
an equivalent number of terms in the power series. Another variation is pos-
sible in the way in which the ék is defined. One can follow the procedure used

in Chapter 4 and include all terms of the second order in X, in the %k and Tri.

Then, one obtains
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k Py /k-1
] .
2 M .\ *k /k-1 )

2
Tx Py k-1

(ALl
L
=
=

It would appear that this procedure might be the most preferable because the

B(xk) is reduced to

Bl = bsxli * b4x1‘i

It is no longer necessary to approximate the factor exp bzxi, and this would
seem to be an advantage. Unfortunately, it has been found tmt this procedure
leads to a biased estimate and in many cases, particularly when the variance
of the noise is small, provides poorer estimates than are obtained with the
Kalman filter. Since the minimum mean-square estimates are theoretically
unbiased, the bias must be attributed to the error in the approximation of the
density. Thus, one would expect the bias to be reduced as additional terms in
the Edgeworth series are included. This has been found to be an accurate
description of the behavior that is observed in the numerical studies. Con-
siderations pertaining to errors in the approximation of the density are
discussed in Chapter 7.
6.3 ON EXTENDING THE USE OF LINEAR FILTERS

In this section we offer a non-rigorous technique for including the effects
of terms of greater than first order of the Taylor series representations of the

plant and measurement equations. Consider the system (6.1) and (6.2) again.
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Assume that a nominal xlt-l exists and let (6. 1) and (6.2) be represented by

1 2
= f1 = £
0%, = BOX v ROx v W (6.14)
5z. = h'6x +=h''sx> +v 6. 15
k- O™ Fohiex tv -19)
where
Df -
0% 1 T M1 k-1

0xy - %~ By

u._U.,

6z =z - B [ ¢ )]

To apply a linear filter, one must represent the evolution of 6 X, by a linear

difference equation and § z, by a linear relation with the state. The obvious

k
procedure for (6.14) and (6. 15) is to neglect the second order derivatives f.l'('
and h.l'{' Consider an alternative procedure.
At the sampling time tk’ one has an estimate of the state § X1 Let
0 X1 be written as
0%1 T %17 0%

Then

0%

1 .]; (1} e =
B0 %1 T B Oy ~ 0% 0% 5+ W

1 ~ 1 ~
1 - -—fr
G+ 2 B0 %10 %1 ™2 T 0 %1051 * W1 (6.16)
_].'. 1" = - i
Now, neglect only the term 2 fk 6xk_1. As long as 6 xk—l is small

compared with 6 ik- 1’ one would expect (6.16) to provide a better approxima-

tion of the behavior of the plant than when the second order effects are
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1 -
neglected entirely. Then, the factor (tl'{ + 3 tl'(' éxk_l) will serve as the linear

plant approximation. The prediction of the state at tk is seen to be given by

< = (f! Lopsa A
0% ey = Gt ot 0% P09% 6. 17)

and the variance is

2 Dol 122 2
= + =1 +
Pe/k-1 — Gt 28 0%-1) Preen T %en (6.18)
Compare this result with the more precise relations found in Table 6. 1(b).
Suppose that P(X, _ 1/zk-l) are gaussian so that

Mg-1 = O

4
k-1 Pko1

<
|

Then, the predicted mean and variance are seen to be

p = (f? 1osa 2 1 11 2
0% /o1 = Gt o B 0% 1) 0% Yo Py
and

2 - 1 l 1t g 2 2 2 _3. 1" 4
Py k-1 G B0 D P Y B Py

Thus, the approximations (6.17) and (6. 18) are seen to cause the terms

1 2 3 4

-—_frt — ft1 : .

2 fk pk_ 1 and 4 fk pk_1 to be neglected from the mean and variance equations,
respectively. In many cases, one would not expect this omission to be
significant.

A similar procedure can be employed for 5 z The predicted estimate

K’
0 X /k-1 is used in rewriting (6. 15) as

- 1 .]; 1"Mase
ézk = (hk+2h.k6xk/k_1)5xk+vk (6.19)

120




The equations (6.16) and (6. 19) are linear in the state perturbations. In

the use of the linear filter, the plant F. and measurement coefficients Hk can

k

now be treated as
]_)f 1 -l 1 5 o
B = L% 0%

Df ., .1 a
= 4+ =Rt
He = mrohiox
Of course, if the nominal is rectified with 65{1{—1 at every time t , then after

the rectification

2 = 2! =
[ Xk-l 6 2&{ 0.
so the second order derivatives are eliminated.

This technique is applied in Chapter 7 and produces some interesting

results.
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TABLE 6.1
The A Posteriori Density Function

(a) The A Posteriori Density p(xo/zo) for the Initial Sampling Time

1 2 10 2
p(xo/zo) B koexp - _Z-(Co) (1+ 31703H3(Co) +4l!c4H4(go) +£C3H6(Co)]

xo—xo
(; =
o p0
.. = - 0
3 3
po
vo
c4 = _Z -3
po
Central Moments:
A = ~ +
xo go Emo/zo]
2 2 2
po B Emo/zo] -E mo/zo]

W = E[r/z,] - 3E[n /2 1bp - E°[n /2]

v = E[ni/zo] - 4uoE[no/zo] - 6piE2[no/zol - E4[no/z01
and

E[n,] + E[n,B,()] + E[n B} ()]
1+E[B,] +E[B,]

E(n/z,] =

The expected values are obtained relative to the density

1 1 no)z

21717 exp—E (TT—
o o

p(n) =
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TABLE 6.1 (continued)

where
2
11
2 2 2
i1 r m
o 0 o
hz
A 2 00 a
go—no( 2 + 2)
r m
o (4}

(See Appendix D for further details.)
Measurement Nonlinearity Terms:

B 2 2 4
By = B1Mo tBa1Mo T P31 TR,

_ n 2 ~3
By = 2b,5 + 3193’2o +4b, g

A A2
321 = b2+3b3§o+6b4€o
Bgy = by b5,
Byr = By
where
eOZO
b, =73
r
0
hOeO
by = -3
r
o
2
eO
b = -—=
4 N
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TABLE 6.1 (continued)

k-1
(b) The Prediction Density p(xk/z )

- 1 2
p(xk/zk 1) =k /e-18% " 3 (Ck /k-l)

1 1 10 2
[1+370,Ha(C a9+ 3rCa G ne 1) *6r Cal G i)
¢ _ %" i1
k/k-1 pk/k—l
W
S
€3 ~ 7 73
Py k-1
V.
~ Vk/k-1
c4 = -3
Py k-1

Central Moments:

. . 2 .2
K1 = 51t 8Py T %d)

2 2, k-1. 2
Pe/k-1 = EIN/Z 1=K
3, k-1. . 2 3
e /k-1 = E{x /2" 1= 8% n 1Py /e-1 ™ Ri/k-1

4, k-1, . 2 2 4
Yh/k-1 Elx /2" "1 -4 p Mok-1 ” /k-1Pk/k-1 7 Fk/k-1

where
k-1 - -
pd/h) = o+ B AT v o g B /2T

k-1
+ gf;EIXﬁ_l/z ]
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TABLE 6.1 (continued)

3, k-1, _ .2 3 3 k-1 4 k-1
Ex /2" "1 = 3q_ % 4 +HEIX /2 ]+3’12(ng["1<-1/ z ]
+ 3£kg12<E ["15<-1/ 27 + giE[xgq/ 2]

E [xﬁ/ 2 - 3q1‘i-1 + qu-l[fiE("ﬁ-l/ 27 + 2 g Bt _y/ 27

+EEE /20 )] LR /2T
+AEg EG /2 +6LBEG /2 )

+ 4fk‘ir'l?:E ("17<-1/ 27 + giE (’{-1/ 2
and

2 .2
Pr-1 ¥ %1

. 2 .3
M1 ¥ 3% 1Pr-1 T %1

E(xi-l/ 27

E(xi—l/ 27

4 k-1 . 2 2 .4
E@ /2 ) = Ve T M T8 1P F R
A ~ 2 A 3 2 ~ 5
e T L o e W R
6 .2 3
5P-1 + % 1%k-1 F 2% 1Mk
A 6
+ 15K 1Pe-1 T %1
35% 6 13582 v 4358
Xe-1Pr-1 ¥ 0% 1 V-1 T PRk
52 T
+ 200 P11
8 k"l - 8 hz 6 A4 A5
Elx, /2" 71= o ; + 140X _,py 70X Vo +56% My

6 2 .8
+ 28X P11

E(xli— % 2 )

I

E("E-l/ 2

E ["11-1/ =)
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TABLE 6.1 (continued)

(¢) The A Posteriori Density p(xk/zk)

b, /29 = K exp - 5 (6 11+ 3regH () + e Hy (G +gr ey ()]
. "
k pk
%
03 = - 3
Py
_
Cy T T4 -3
Py

Central Moments:
ik = éo+E[nk/zk]
bl = E[p/2") - E[n /"]
o = Biny/2] - sBin /2" 0p - Bl /2]

Ve = E[ﬂﬁ/zk] - 4ukE[nk/zk] - GpiEz[nk/zk] - E4[nk/zk]

E{n. L BYPM
Elry/=) - E{B()P(n]

where

B(n,) o B, () + Bz(nk)

IIE

P —c H,(m) +—c H,(m) +—c He(m)
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TABLE 6.1 (continued)

1 _
z 2 +
k k  Px/k-1

The Bl('ﬂo) are defined in the same manner as in Part I with the

trivial change of subscript. The Hi('qk) and the E[nll(/zk] are defined

in Appendix D,
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PRECEDING PAGE BLANK NOT FILMED.

CHAPTER SEVEN

NUMERICAL COMPARISON OF LINEAR AND NONLINEAR
FILTERING TECHNIQUES

It has already been pointed out that simpler approximations can be
obtained from the density approximation described in the preceding chapter by
neglecting either terms of the Edgeworth expansion or terms of the power
series expansion of exp B(xk). Each of the approximations in the resulting
hierarchy describe a minimum mean-square estimator (i.e., the conditional
mean provides the estimate). In this chapter, the adequacy of each density.
approximation is investigated by examining the behavior of the estimates of
the state of a dynamical system. These estimates are compared with those
obtained from the linear estimator of Chapter 3, the nonlinear estimator of
Chapter 4, and the modified linear estimator of Section 6.3. The system that
is considered is simple. Nonetheless, it appears to illustrate the important
characteristics as clearly as the more complicated systems that have been
investigated.

The mathematical model and the computer program are described briefly
in Section 7.1. The parameters and estimation policies that are considered
are also discussed. The approximation of the true p(xk/ zk) by a gaussian
density provides an interesting class of filters., They are discussed in
Section 7.2. The filters resulting from the Edgeworth expansion approxima-
tion (i.e., the nongaussian version) are investigated in Section 7.3. Conclu-
sions suggested by the results of Sections 7.2 and 7.3 are stated and

discussed in Section 7. 4.
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7.1 THE GENERAL PROBLEM

Consider a scalar system with plant described by

Xe = %k-17 Yk .1

The state is to be estimated from measurement data that are related to the

state according to
2
Zye —xk+vk k=0,1,...) (7.2)

The initial state xo and the plant and measurement noise sequences wj, vj
are gaussian with known statistics.

E[xo] = a

E[(xo - a)2] = mi

E[vk] =0 = E[wk] for all k

2 2 2
E[vlf] =T E[wk] = q

The variances mcz), ri, qi will constitute the basic parameters for the
study. The m(z) and rlz{ will always be greater than zero, whereas qi will be
set equal to zero in many cases. The actual values assigned to these param-
eters will be Specified later.

The estimation policies are based upon the use of perturbation theory.
Two different nominals will be utilized. First, the nominal will be chosen to
be E [xo] , and this value will be retained throughout the observation policy.
As an alternative choice, the nominal will be rectified at each sampling time to

be the minimum mean-square estimate (as in Chapter 5). The results obtained

with each of these choices for the nominal will be compared. In each case,
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the perturbation equations have the form
+
0% T %1 ¥ M1 (7.3)

82 hl'((gp‘ska’éhl? (gﬁ)éxi*"’k (7.4)

]

where
0% 1 = k-1 %1
% = k-1
6% = % - 5
A digital computer program was developed to simulate this system and
to exercise several different estimation policies. The initial state and the
noise sequences were obtained from a gaussian random number generator [61].
All of the computations were accomplished using double precision arithmetic.
The results that appear in subsequent sections represent a single
realization of the random sequence. The size of the computer program
coupled with the nature of the double precision computations on the particular
IBM 7040 that was used precluded the possibility of a complete Monte Carlo
simulation. That is, it did not appear to be feasible to obtain the number of
runs necessary to compute significant sample means and variances (i.e.,
apparently at least 1000 realizations are required [31]). Instead, the data
presented below represent the behavior of each filter when the same noise
sequences are encountered. It is reasonable to expect in the comparison of two

filters that the one that gives the better response for a given noise realization

will be generally more effective. Enough cases were simulated to indicate
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that the results that are presented are representative of the type of behavior
that should be expected.

The filter configurations that are examined are to a major extent obtained
from the density approximation derived in Chapter 6. As has been mentioned
earlier, different density approximations are obtained from the most general
expression by eliminating the Hermite polynomial terms (i.e., HG’ H 4’ H3)
and/or by including only one term in the power series expansion of exp B
rather than two. Additional density approximations are provided by the results
of Chapter 4. This gaussian approximation is investigated in Section 7.2 to
show the effect of different approaches and to indicate that not all approxima-
tions should be expected to provide satisfactory results.

7.2 FILTERS BASED UPON A GAUSSIAN DENSITY

Four different filters are investigated in this section; two of them are

linear whereas the other two are not.
(G-1) Linear (Kalman filter): This filter is described in Chapter 3.
(G-2) Linear filter with modified system matrices: The Kalman filter
is utilized, but the system matrices are modified in accordance
with the discussion of Section 6.3. In this example, the linear

relation between the measurement and state perturbations is
6z. = |+.]_' “GA')G +v
P R A M

0k = 6%
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(G-3) Gaussian nonlinear filter Number 1: The Hermite polynomial
terms H3, H 4 and H6 are eliminated and the linear moments
are modified because of the presence of the nonlinear measure-
ment term exp B. See Section 6. 2 for further discussion.

(G-4) Gaussian nonlinear filter Number 2: The gaussian approximation
of Chapter 4 is considered.

These four filter configurations were exercised with a variety of noise
realizations and a priori statistics. The results for a particular noise
realization is depicted in Figures 7.1 through 7.3. These data indicate the
relative behavior of the filters when acting upon the same measurement data.
The system yielding the results shown in Figure 7.1 contained no plant

noise. The standard deviation of the initial perturbation was assumed to be

10 percent of the mean value of the initial state.

E[xo] =1
E[(xo— 1)2] 1=)f mi
= 0,01

The initial perturbation was obtained from a gaussian random number generator
and was
Gxo = -0.04478927
Before an observation ié processed, the estimate of the perturbation is zero,
so the initial error is 6xo.
In Figure 7.1(a), the measurement noise has a standard deviation equal

to 1 percent of the nominal state
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IIE

r2
k
0.0001

E [vi]

The standard deviation of the error in the estimate (i.e., pk) was found
to be approximately the same for all configurations. Thus, only the standard
deviation from the linear filter (i.e., Case G~1) was plotted.

Note first that the error in the linear estimate exceeds the statistic on
the eleventh measurement and remains larger thereafter. Although taken by
itself, this behavior is not impossible, it nonetheless describes a common
occurrence in the application of linear filters to nonlinear problems. As was
noted in Chapter 5, a sufficiently accurate measurement device will often
cause the statistic to be a poor measure of the actual error because of the
importance of the neglected nonlinear effects [31].

The general character of the response of filters (G-2) and (G-3) is simi-
lar to that observed with (G-1), but the magnitude of the error is considerably
reduced for these two configurations. It is of further interest to note that
(G-2) and (G-3) give essentially the same results.

When the filter of Chapter 4 is used, the results are very disappointing.
In fact, the error inthe estimate is seen to be considerably increased and
suggests that the estimate contains a bias error. Since the conditional mean
is theoretically unbiased, a bias error could enter only because the approxi-
mation of the true density is poor. One would expect that the error would be
decreased by improving the density approximation. Although not discussed at
length here, such an improvement was a;ttempted and the response was observed

to improve.
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The results shown in Figure 7.1(a) are based upon a single prespecified
nominal. The filter response, when the nominal is rectified at each sampling
time, can be seen by referring to Figure 7. 1(b). Under this condition,

Cases (G-1) and (G-2) are theoretically identical. It is particularly interesting
to observe that Case (G-1) in Figure 7.1(b) is essentially identical with Case
(G-2) of Figure 7.1(a). Thus, the modification of the system matrices for
policies based on a single nominal has the same effect as rectification of the
nominal at each sampling time.

Rectification of the nominal is seen to cause all four cases to give
basically the same results. This implies that the nonlinear effects are
eliminated to a major extent. This becomes more true as the number of
samples that have been processed increases.

The standard deviation of measurement noise is increased from 0.01 to
0.1 for the results shown in Figure 7.1(c). One observes that the four filter
configurations provide very similar behavior. This result indicates that the
magnitude of the measurement noise is more significant than the nonlinearities.
Further verification of this statement was provided by finding that rectifica-
tion does not appreciably influence the results. These data have not been
included.

When noise is included in the plant, the filter response is affected in a
striking manner. As is known, the presence of plant noise prevents the error
variance from vanishing and causes it to approach some nonzero value. As is

seen in Figure 7.2, plant noise with a vérlance of 0.0001 leads to a limiting

136




Jue]d 99J4J-9SJON - SIOJBWI}SH UBISSNEN) Jo uosiredwon °*(q)T°L oandrg

SUOJ}BAIDSCQ JO JOqUINN

F-D) - I0IIY  Ae-—DA 1000°0 = Mu
(e-p) - 001IY G —g *Koyy 0= b ‘10°0 = “m
. (4 (4
(z-p) ‘(1-o) - Zoaxg O—0
Uo1BOINO9Y

808€D [[V - UOIBIAS( PIEPUBIS

:

=
(=]
70T X SJBWISH U} JOIIy

—49°0

8°0

137



JUB[J 99IJ-9SION - SJI0JEW}SH UBISSNED Jo uosiredwo) (o)1 L oandig

{3 0~
SUO1}BAIO8]O JO JoqUUINN
02 8T 91 4! (4 0t 8 9 i4 ” 4
-+ o 0
| _ | | \— ] 7\ |
(R = 4 TR0 —3 y/ A\
= " 0\‘. —=(} 0‘ - Cy—- a -~y N \\
m — 7~ P - — N .l
¢'0
—{¥%°0
/ D
//
Jg _J9°o
(F-D) - oeWISH Ul JOXIH A—-—A - —18°0
1000 = &
(e-D) - oyEWNISH Ul JOIIH F— — 140y 2
o
(z-D) *(1-D) - eypmnsy Ul J011y O—O 0= Mu ‘070 = W
s898e) [[V - UO1IBIAS(Q PIEPUEIS TeUTmoN poatjioodsald —0°T

70T X ojew}sy U J01IF

138




value of approximately
Py, = 0.00455

within three samples. One is hard-pressed to judge that one filter provides a
more satisfactory response than any other. Naturally, as the level of plant
noise decreases, one approaches the behavior shown in Figure 7.1(a). It was
also found that rectification does not affect the results of Figure 7.2 in any
significant manner.

The nonlinear effects can be amplified by increasing mcz) since the initial
state perturbation is based upon the initial statistics. To obtain an additional
insight into these effects, the mi was chosen to be

m2 = 0.1
(0]

This led to an initial perturbation of

(Sxo = -0.14163609

The behavior observed in Figure 7.1(a) is aggravated by this increased pertur-
bation. The results for a noise-free plant, measurement noise variance of
0.0001, and prespecified nominal are depicted in Figure 7.3. The inadequacy
of the standard deviation P, 8 a measure of the error is revealed more clearly
than in the preceding data. The linear filter (G-1) and the filter (G-4) are seen
to exhibit a definite bias because of the invariance of the error. The fact that
(G;-4) leads to a deterioration of the accuracy of the estimate 18 even more
apparent. Possibly the most interesting aspect of these data stems from the

realization that the modified linear filter (G-2) produces consistently better
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results than the nonlinear filter (G-3). However, all of the filters lead to
results that consistently disagree with P This case will be discussed further
in the next section.

One would expect, judging from past results, that rectification would
improve the filter performance. It is noteworthy that when the nominal is
rectified, the results do improve and, in fact, the response is described quite
adequately by (G-2) in Figure 7.3. Thus, once again for this example, Case
(G-2) appears to be equivalent with rectification of the nominal.

7.3 ESTIMATORS BASED UPON NONGAUSSIAN DENSITIES

In this section, the Kalman filter is compared w th the filters provided
by the Edgeworth series approximations. The results are based upon the
approximation

1_2
expB1 =~ 1+B1+2!B1

where B1 is defined in Chapter 6. It was found that it was necessary in most

instances to use the two-term approximation as opposed to

expB1 4 1+B1

in order to obtain sensible behavior for the second and fourth central moments.
This aspect is discussed briefly in Section 7. 3. 2.

The nonlinear filters are identified by the highest order Hermite poly-
nomial that is included. Thus, the estimate provided by most general expan-
sion is referred to as the H  filter. Simpler models for the nongaussian

6

densities yield, then, the H

3 and H 4 filters.
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7.3.1 Nonlinear, Nongaussian Filters

Let us consider the response of this group of nonlinear filters for the

cases investigated in the preceding section. In all of these cases, let

=1
E[xo]
First, suppose that
m2 = 0.01
(0
2
rk = 0.0001
2
qk =0

The initial perturbation is

(Sxo = ~0.04478927
and the measurement noise realization is identical with that contained in the
data of Figure 7.1.

The results based on the Kalman filter that were included in Figure 7.1
are repeated in Figure 7.4. It was found that the gaussian, nonlinear filter
and the H3 filter provided essentially the same response. This is seen by
comparing Figure 7.1 and 7.4. In addition, the H 4 filter exhibited essentially
the same response as the H_ filter. Possibly the most significant difference

6
that is observed is that P for the H " and H6 filters is considerably larger than
for any of the lower order filters. This results in a greater sensitivity of the
conditional mean to current measurements. This is reflected, unfortunately,

by the larger error that is observed during the fourteenth through seventeenth

samples. The error is compatible with the statistic pk, however.
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A prespecified nominal is used in the data for Figure 7.4(a). When the
nominal is rectified, the results obtained with all of the filters tend to be
essentially the same. These data are depicted in Figure 7. 4(b) and again
indicate the manner in which rectification seems to eliminate the nonlinear
effects.

When the measurement noise is increased (as was done in Figure 7. 1(c) ),
the linear filter gives the same response as the gaussian, nonlinear filter
(G-3) and as the H3 filter. The H 4 and H6 filter again are adveréely affected
during the fourteenth through seventeenth samples.

Plant noise causes the same response for the H_, H , and H6 filters as

3’ 4
was described for the nonlinear gaussian filter (G-3) in the preceding section.
These results will not be repeated here.

When the nonlinearity is made more significant by increasing the state
perturbation, the nonlinear filters are seen to provide a response that is con-~

siderably different from that observed for the gaussian estimators. As seen

in Figure 7.5(a), the P for the H3, H

4 and H6 filters is larger than for the

gaussian filters. Thus, the pk appears to be a more accurate measure of the
error for these filters. Also note that the P is a random variable for the
nonlinear filters, so the pk is not as well-behaved. Comparison of Figures
7.3 and 7. 5 indicate that the error in the estimate from the modified linear
filter (G-2) is subject to less violent changes, but that the Hi filters give
estimates that appear to cope with the nonlinearity more adequately. These

filters are more sensitive to the actual measurement noise, however.
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Orbit rectification improves the estimate for every case but particularly
for the linear filter. The H 4 and H6 filters appear to provide the better res-
ponse during a major portion of the interval. However, these filters again
are more sensitive to the large measurement noise values that are present in
the fourteenth through seventeenth samples. These results are presented in

Figure 7. 5(b).

7.3.2 A Poor Density Approximation

One difficulty manifested itself in some of the cases that were simulated
although not in any of the results that have been presented above. It was found
that the second and fourth central moments occasionally agsumed negative
values. This was observed for every one of the nongaussian filters, although
it occurred most frequently among the approximations that used

expB1 = 1+B1.

The inclusion of the second order term eliminated the problem to a major
extent, although it did not eliminate it entirely when a large state perturbation
was experienced. This suggests that it might be appropriate to include the
third order term (i.e., 1/3! Bi) in order to improve the approximation of

exp Bl' Alternatively, the negative moments could be interpreted as implying
that additional terms of the Edgeworth expansion should be included in order to
improve the approximation of p(xk/zk) . As has been pointed out, the truncated
Edgeworth expansion is not a true density because negative values are assumed

for some values of xk This could result in erroneous values for the moments.
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7.4 SUMMARY OF RESULTS

Several conclusions can be drawn from the numerical results of the
preceding sections. Although the data are based on a very simple system,
more complicated systems have been investigated and appear to corroborate
the conclusions that are stated below.

Before proceeding to any statements regarding the merits and demerits of

the various estimation policies, it is necessary to recognize the following.

(0) Unless the measurement noise and/or the plant noise is "small",
the linear filter gives essentially the same result as the considerably
more complicated nonlinear filters. No attempt shall be made to
clarify the circumstances which one can determine if the noise is
sufficiently "small™ to warrant consideration of the nonlinear
filter.

With this provision in mind, it is possible to consider the relative behavior of
the filter configurations.

Of the three conclusions stated at the end of Chapter 5, the one dealing

with rectification is further substantiated in this chapter, and the one dealing
with the nonlinear filter of Chapter 4 can be strengthened.

(1) Rectification of the nominal at each sampling time causes the
behavior of the linear filter to be considerably improved. After
a sufficiently large number of measurement samples, the linear
filter yields essentially the same response as considerably more

complicated systems.
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The gaussian, nonlinear filter of Chapter 4 is not satisfactory.

It does, in fact, appear to yield an estimate that contains a bias
which causes it to yield poorer results than even the linear filter.
Thus, one must be cautious when deriving an approximation of

a posteriori density.

Several other significant results were obtained. The filter configuration (G-2)

based upon modification of the linear system matrices and concomitant applica-

tion of the linear filter provided a number of suggestive results.

(3)

4)

The filter configuration (G-2) yields the same behavior for the
prespecified nominal that is observed when rectification of the
nominal is introduced. This estimation policy was utilized in
Chapter 5, but did not provide such striking results. This can be
attributed to the fact that the plant nonlinearities were not included
in the modification of the system matrices because of the inherent
difficulties. As was observed, it was these effects that were
dominant, however.

The gaussian nonlinear filter obtained from the general approxima-
tion of Chapter 6 yielded results that are comparable with (G-3).
Since the filter (G-3) involves many more computations, one would
question its usefulness. It might prove useful in the determination

of a control policy if one were dealing with that problem.

The Edgeworth approximation provided three filter configurations.

Their behavior shall be summarized in the following manner.
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(5) TheH 4 and H6 filters yielded essentially identical results, whereas
H3 can be more closely identified with the gaussian nonlinear
filter (G-3).

(6) The conditional variance is generally larger than that for the
linear and other lower order filters, and in many cases appears
to be a more adequate measure of the error in the estimate.

(7)  The estimation error for the H6 filter is more sensitive to the
measurement noise realization than is the lower order filters.
This would appear to be a manifestation of the larger values
observed for the variance.

The sensitivity of the filter response to the method of approximation is
certainly an important consideration. For the example discussed in this
chapter, the following conclusions become apparent.

(8)  The approximation of the nonlinear measurement effects (i.e., the

factor exp Bl) is of supreme importance. It was found that the
Bl should be written in terms of the centered variable

X~ 5
where f;'k is the linear estimate rather than leaving it as a poly-
nomial in xk Furthermore, the number of terms retained in the
power series approximation of exp B1 also has a significant effect.

In general, at least terms including the quadratic must be included.
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It was found that the quality of the approximation of exp B1 could be

judged to an extent by the behavior of the second and fourth central moments
My and Ve These quantities, which should be positive, sometimes assumed

negative values. This was particularly true when exp B. was approximated

1

by the first order terms of the power series.
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CHAPTER EIGHT
SUMMARY AND CONCLUDING REMARKS

The general problem of determining the optimal control policy for a
stochastic, time-discrete, dynamical system was posed in Chapter 1. The
general solution of this problem, assuming knowledge of the a posteriori den-
sity p(ggk/ _z_k) , was presented in Chapter 2, but more specialized problems
were considered thereafter. Attention was restricted primarily to the prob-
lem of approximating the density p(ﬁ(/ gk) The adequacy of each approximation
was evaluated by examining the behavior of the resulting minimum mean-
square estimate. Estimates from both linear and nonlinear filters were
compared. The class of linear filters that were considered included several
that are based on techniques for extending the range of applicability of the
general linear theory.

In the following section, the problem dealt with in each of the preceding
chapters is described, and the principal results are summarized. The major
conclusions of the study and suggestions for future research are discussed in
Section 8. 2.

8.1 SUMMARY
CHAPTER 1: The optimal stochastic control problem is described in the
following manner. Suppose that the state of a dynamical system evolves

according to

X = L1 1 B @
where L is the control vector and w1 is a random sequence with known
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statistics. The control policy is to be based upon measurement data described

by

5, = by ew) @

where v. is another random sequence, independent of the

Y _vyk_ 1’ with known

statistics. Then, choose the control vectors to minimize the expected value of

N

Ve T ) Vs ) (L)
i=1

The general approach to the solution of this problem and the related problem
of state estimation is then described.

CHAPTER 2: The general stochastic control problem stated in Chapter 1 is
considered. In particular, it is shown that knowledge of the a posteriori den-
sity p(gk/gk) provides the general solution of the minimum mean-square error
estimation problem and the stochastic control problem. The p(ﬁ(/_z_k) is then
shown to evolve according to an integral recurrence relation. Relations des-
cribing the prediction and smoothing densities p(gk +Y/gk) and p@k—Y/ g_lS are
also derived. In some instances, the application of the general relations to

a specific system is simplified by working with the equivalent relations involv-
ing characteristic functions. These relations are derived.

CHAPTER 3: The linear, gaussian, optimal stochastic control problem is

considered. It is shown that the solution of this problem separates into the
dissimilar problems of state estimation and deterministic, optimal control.
Furthermore, it is seen that the separation occurs because the error covari-

ance matrix of the estimation problem does not involve the measurement data.
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The solutions of the three aspects of the linear estimation problems (i.e.,
smoothing, filtering, and prediction) are presented.
CHAPTER 4: Attention is restricted primarily to the problem of approximating

the a posteriori density for a system with the plant equation

R ST a-N

and the measurement data

2 - )+, @-n

The noise sequences are assumed to be gaussian and the approximation

is established under the constraint that the density p(:_ck/gk) is gaussian. This
procedure leads to a generalization of the Kalman filter of Chapter 3. It is seen
that the error covariance matrix becomes a function of the measurement data.
Furthermore, it is seen that the choice of the most recent minimum mean-
square estimate as the nominal leads to a considerable simplification of the
equations.

The problem of determining the control policy for a linear plant from
measurements that bear a nonlinear relation to the state is considered briefly.
It is suggested that the Separation Principle for completely linear systems is
no longer valid because of the dependence of the error covariance matrix upon
the measurement data.

CHAPTER 5: The problem of estimating the state of a spacecraft in a nearly
circular orbit from the angular measurements provided by a horizon sensor

is considered. A nominal is assumed and the results of Chapters 3 and 4 are

157



utilized in this numerical investigation. Several estimation policies are

implemented. Briefly, these policies are:

@)
(2

)

(4)

©)

(6)

M

Kalman filter using a single prespecified nominal

Kalman filter using the '}:{k-l as the nominal at each sampling time
tk (the policy of updating the nominal is referred to as rectifica-
tion)

Kalman filter with modified system matrices and prespecified
nominal (the manner in which the system matrices are modified
is discussed in more detail in Section 6. 3)

Continual re-estimation of the initial state using linear theory
with subsequent updating of the estimate of X using the nonlinear
plant equations

Rectification using a smoothed estimate

Nonlinear filter of Chapter 4 (referred to as (G-4) with a pre-
specified nominal)

Nonlinear filter (G-4) with rectification.

Of these seven estimation policies, rectification was found to significantly

extend the range of linear theory and provided the most satisfactory results in

those cases in which policy (1) was found to be inadequate. Policy (4) was also

seen to provide excellent results and has the advantage over the rectification

policy that the system matrices do not have to be recomputed at each sampling

time. It was established that the estimates provided by the nonlinear filter did

not, in general, differ from those obtained with the linear filter. Only the
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nonlinear measurement effects were included, however, so this apparent
ineffectualness could be attributed in part to the dominant role played by the
plant nonlinearities. This filter is discussed further in Chapter 7.

CHAPTER 6: A procedure for approximating the a posteriori density p()ﬁ(/zk)
is proposed. It is suggested that this procedure be implemented using a
truncation of an Edgeworth series to approximate the density at each sampling

time. The p(xk/zk) associated with a second order, scalar system

I

R gkxl2<—1 * V-1

' hk’ﬁ(+ek"12<+vk
where Wk-l and i are gaussian is approximated by establishing recurrence
relations for the first four moments of the distribution. It is shown that the
moments for the prediction density p(xk/zk-]) can be obtained without difficulty.
It is necessary to approximate the nonlinear measurement effects which appear

as a factor exp B. This is accomplished by expressing B as a polynomial in

terms of the variable

M= %%
where §k is the linear estimate of xk, and then expressing exp Bl as a power
gseries
1 _2

expB1 = 1+B1+-2-!- B1+...

Several different approximations can be obtained from the general result of
this chapter including a gaussian approximation that differs from that found in

Chapter 4.
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Finally, a technique is suggested for improving the approximation
provided by linear theory. This procedure results in the use of second order
terms of the Taylor series expansion of the plant and measurement equations.
CHAPTER 7: The filters deriving from the density approximations of Chapters

3, 4, and 6 are applied to the problem of estimating the state of the system.

X1 ¥ Y

*x

B = %Y

It was found that the variance of the plant and/or the measurement noise had
to be "sufficiently™ small before the nonlinear filters provided results that
differed significantly from those obtained with the linear filter. In the cases
in which the linear and nonlinear filters gave different results, the response of
the linear filter was benefitted significantly by rectification of the nominal.
Furthermore, the filter of Chapter 4 was observed to yield generally unsatis-
factory results. The estimate provided by this approximation appeared to be
biased.

The gaussian filter obtained from the general results in Chapter 6 gave
satisfactory results in most cases but did not perform significantly better
than the modified linear filter. In fact, the modified linear filter appeared to
provide the same behavior with a single prespecified nominal that the linear
filter exhibited with rectification. The two policies result in essentially

equivalent response.

160



The most general nonlinear filter consistently yielded values for the
conditional variance that were larger than those obtained from the linear filter.
In many cases, the larger values appeared to more adequately describe the
error. This filter was more sensitive to the magnitude of the actual measure-
ment noise realization. A more complete summary and discussion of the
numerical results is given in Section 7.4.

8.2 GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

A procedure for approximating the a posteriori density function has been
suggested and has been seen to lead to a straightforward means of accomplish-
ing this objective. Several questions arise concerning the quality of the
approximations that result. The behavior of the specific approximations con-
sidered in this investigation and the conclusions that derive therefrom are
discussed in Section 7.4 and shall not be restated here. In the remaining
paragraphs, some general questions relating to the application of the theory
and the method of approach are discussed. Topics that require additional
investigation and areas for future research are included throughout the
discussion.

I. The mathematical model upon which the study is based assumes a time-
discrete formulation. Some of the reasons for the use of this model have been
discussed in Chapter 1. On the other hand, one major difficulty is created by
the use of a time~-discrete model that must be overcome before the theory can
be applied. In particular, many dynamical systems are described by differen-

tial equations rather than difference equations. Although these differential
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equations can be solved numerically, it is often impossible to obtain an analytic
form for the solution. Thus, the application of the perturbation theory sug-
gested here is complicated by the difficulties inherent in determining the partial
derivatives required for the Taylor series expansion of the plant equation.

This difficulty is circumvented in using a linear theory by performing the
linearization in terms of the differential equations. It is, then, a straight-
forward matter to establish the state transition matrix and thereby to establish
a linear difference equation. It was seen in Chapter 5 that the nonlinear plant
effects can be dominant if specialized techniques such as rectification cannot
be used. Thus, this aspect cannot be ignored and would appear to require
considerable additional research.

II. The relations that are obtained by the application & this nonlinear pertur-
bation theory are considerably more involved than the well-known results for
linear systems. Their implementation for use with a multidimensional sys-
tem would appear to lead to a significant computational burden. Thus, one
should examine the possibility of developing special techniques that would
enable the utilization of linear theory for problems which at first glance would
seem to require more sophisticated methods. This has been shown by example
to be possible for estimation problems. It is not clear if analogous policies
can be developed for systems involving control considerations that will

prove to be as fruitful. In many control problems, the nominal control policy
is selected so that prescribed trajectory constraints are satisfied. Thus, one

cannot arbitrarily modify the nominal without first verifying that the constraints
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will be satisfied by the new nominal. This restriction would seriously hamper
the use of a rectification policy. Thus, the development of specialized methods
for extending the range of applicability of linear theory for control problems
appears to be worthy of consideration.

III. The validity of the approximations has been tested by observing the
behavior of the conditional mean (i.e., the minimum mean-square estimate)
for specific nonlinear systems. It has been found that the estimates behave
satisfactorily in many cases and do provide an improvement relative to the
output of a linear filter. However, the approximations were observed to
deteriorate quite radically for many problems in which the nonlinear plant and
measurement effects were large. The deterioration was marked by the appear-
ance of negative values for the second and fourth central moments. Since

this is theoretically impossible, such behavior must be attributed to the in-
accuracy of the approximation. The truncated Edgeworth series that were

used for the approximation are not true probability density functions because
they can assume negative values for some values of the argument. These
approximations do not provide the only possibility that could be investigated.

It would be interesting to assume that p(xk/ zk) belongs to a particular class of
parametric distributions (e.g., the Pearson distributions). The parameters
would then be determined from the system characteristics. The use of a true

density for the approximation might cause the moments to behave more

satisfactorily.
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IV. Examination of the behavior of the moments provides an indirect method
of judging the quality of the approximation. It would be desirable to compare
the approximation with the actual a posteriori density. This could be done for
a simple system with a static plant and nonlinear measurements corrupted by

gaussian noise. That is, consider the system

X for all k

*x

K - BE Y

Let x and Vi be gaussian and independent. The a posteriori density can

zZ

be written as

k
p(X/Zk) = M
p(z")

It is possible to form p(zk/x) and p(x) and

p@) = oG /0pEdx

so the density can be written explicitly.

k z, - h(x)
k _ 1 i 2
p/x) =k [ exp-5[—F—]
i=1 i
and
_ l x-a 2
P = ke g ()

Thus, one could compute p(zk/x) for this simple system and compare it with
the results given by the approximation. One could also examine the p(zk/x)
to determine some asymptotic properties of the density and verify that the

approximation exhibits these characteristics.
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V. Little consideration has been given to the problem of establishing control
policies for nonlinear systems. In Chapter 4, it was suggested that the
Separation Principle is not valid for a linear plant when the measurements are
nonlinear. The density approximation of Chapter 6 could be used to develop
perturbative control laws, and it would be interesting to investigate the policies
that result. In fact, these approximations might have their greatest use in the
development of nonlinear stochastic control policies. This should provide a

fertile area for future investigations.
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APPENDIX A
GAUSSIAN A POSTERIORI DENSITY FUNCTION
Let the state be n-dimensional and suppose that m measurements are
available at each sampling time. The conditional density evolves according

to the relationship

p(:_ck/zk_l)p(zk/gk)

p(gk/ak) = p(gk/gk'l) (A. 1)
where
P /2 = fots, /2 e /x_Jax
and
b /2 ) = ot /2 ot /x )dx,
The initial density p@o/go ) is determined from
P /X )P )
(A.2)

Px /z) =
%2 = Tow /x o yax
The conditions that the plant and measurement equations must satisfy

so that p(:_ck/gk) can be represented by

1 A - A
Pl /2) = kg o -5 g - %) P s, - £)) (4.3)
shall be determined.

The initial state and the measurement and plant noise are assumed to

have gaussian distributions.

1 -
pE) =k _ew-3lm -2) M -a)) (A. 4)
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- 1, Th-1
pw) = kexp - {w, Q W } (A.5)
1, T -1
p(v) = k exp-; {y_kRk !k} (A.6)

First, determine the density p()_{o/go ). Since the measurement noise is

additive, it follows that
1 T -1
Ple,/x) = k e -y le, - h) R e, b)) (a.7)

Expand _1_1_0 in a Taylor series. It can be written as

1
= * -+ -
hos) = By&) +ESx +5 1, @
where
oh- oh-
[o) 0
ax1 n
0 ox
Df ° 8h,
H = . = —_—
o . 9x
oh" oh"
[o) 0
axt ox
0 xTJ 16 X
=0 o
no I=)f 6 xTJ 26 X
o
6 xTJ mé X
o
. —
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The J :) are defined as

2,1
8°h 82h!
o . 0 o
8x18x1 ox 8xn
J:) Qf 2.1 2.i
9h oh
[T 0
9X 8x X X
i no%y ) na n|

The superscript on the ho is used to designate the ith component of the vector

h .
LN

Using the expansion in (A.7) and keeping only the quadratic terms, the

p@o/io ) becomes

_ 1, T -1 T_-1
PE/X) = k exp-3 {<5_z_0R0 6z - 20z R HOx

+6x HR 'H 6x -5zTR‘130}
-0 O O 0o 70 M O

The term involving i must be rewritten in terms of 6 X Let

Df _-1
L, - R,
Then
T . T.1 T.m [ 1]
11010 = [GJ_COJOG_:EO...G_J%JOG)_{O] y0
m
Yo
m - -
_ T4, i
- 2 80X, 9025,
i=1
m
= 5x" ( ZJiy )6 x
i=1
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Then,

1 T -1 T.-1
= -— - R
p(z /x ) k exp 2 {éz R Gz 262 Hox

T[H:Ro H EJ y 16x ) (A.8)
=1

Using (A.4) and (A.8), one obtains
= T -1 T, -1
P /x )P ) =k k exp {6z R "oz +6a M 62 }

1, T Tp-1 {1 -1
exp -7 {6x [H R H - 2J0y0+M0]63_c°

i=1
25 aiM 452 R 1H 16x )
- (o] 0 O 0 -0
Define
P;1]=)fHR H_ EJy +M
and
5T Df [GzTR-lH +5aTM'1]P
-0 -0 O (o] - (o] (o]

Using these definitions and completing the square, it follows that
1 T -1 T, -1

= - +

p(z_ /X )p(X.) kxokvexp 5 {6z R "6z +6a M “ba

AT l 1 -~ T -1 A
- 8% P 6% }exp—zi(ago—ago) P (5_:50-5_:50)} (A.9)

Integrate with respect to § _)_:0 . Then,

Moz /x )p(x )dx_ = “x0'y exp - = {6z R Y6z_+6a M oa
‘p(—o o] p(—o -0 ko xp 2 "0 0 0o = o0~
- éiTR 6% ) (A. 10)
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where ko is the normalization constant.

_ n -1/2
k) = [20) (etP )]
From (A.2), (A.9) and (A.10), one sees that
px /z) =k exp—'l'{éx -Gi)TP_l(éx —Gﬁ)} (A.11)
(-o o o 2 "o = "o " ™0 o '
This can be rewritten as
px/z) =k exp—'l-{x -i)TP'lx -%)l (A.12)
(-o o o 2 (—o =0 "o (—o o '
where
X = x*+6%
o ~o -0
The density has the desired form at to.

Assume at tk that

p ()_ck/_z_k) = k_exp - % {gk - gk)Tp;l@k - :_“ck)} (A.13)

+
Now, derive p(ggk_l_l/_z_k ]) First, form

_ 1 e Tl
PE, /%) =k ex -5 {E, ~hyy) Qo &y ~Ei ) (A. 14)

Assume a nominal )_{_l’: and let

Ger1 = L &P

Expand f in a Taylor series about )_:"‘(‘ and retain only second order terms

“k+l

in 51_:k
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T -1 i}
®ee1 " Lgear) U Berr ")) T
f L ) - F 0K -9 65 6X)IQ (&, - £,
(K41 ~ Sy @0 - FiOF "3 AOROXIIQ By = Hey

T -1 T -1 T.T -1
= 0% 1Q 0% ., ~ 20X ,Q Fox +OoX F Q Fiox

T -1
- .15
6 %1% (4. 19)
where
Df
0% 41 = Heyr ~ L&D
Df —
0% T KX
- .
a1, P
1 n
%y %y
p Df 1 _ )
k )
x 41 ' ey
o oy
and
r -
T 1
éggk Gk Ggﬁ(
Df :
EoR :
T n
dg{ Gk 6)_ck
2.4
i pf [ 25n
T\ adad
*k
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For the moment, let

@ = lelo X+l

Then, it can easily be shown that

n
T -1 T ii
0% 141 Ue-1% = 9% ¢ Eka)GEk

i=1

Using (A.13) through (A. 15), we obtain

peg/ Ek)p@kﬂ/ X)) = gk, exe '% {6513;1%15 X1 T OKP ;ldik}

n
1, T, T.-1 i1 -1
exp - 5 L6 [F, Q Fk-izlew +P 16K,

T -1 AT _-1
-2[8%, ,,Q F +0X P 15§k} (A. 16)
Let
-1 Df
Bk = k k }:G w +P

TDf T -1 T -1
6y, = [0% @ F +oX P 1B

By completing the square, (A.16) becomes
PE,/ -z-k)p(’—‘k-»-l/ L) = kky
1 T -1 AT -1 . T -1
oxp - 5 16X 1@ 0%y +OX P 0K - 6w B, oy, Ix

1 T_-1
" 0% %) B 0K - 0vp]
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Integrate with respect to X

kk 1, T -1 AT -1
p(’—‘k-l-l/ik) 'k - exp -2 10X 19 0K ) *OX PSR

Nk

T -1
-6y B 5gk} (A.17)

where the normalization constant ka is

n -1/2
kg = (@ B 1]
T -1 .
The & y-kBk 6 Bk contains 6% +1° 8° this term must be approximated by a
quadratic.

jerl
|

k—[FkalF +P ZGw]

n
T -1 “1-1 v i -1-1
[1- (Fka—le+Pk1) ZGk“’ g Qk 1 k+Pk1)
i=1

Let

-1
M = ka 1Fet Py (A.18)

S0
n
£ -1 i i-1_-~1
[I-nk+1 Zka] Mt
i=1
n

Assuming that ﬂ;}_l( ZGll(wi) has sufficiently small norm, the Neumann series

i=1
expansion [59] is approximately

nk+1+nk+1( XG “’l)nk+1+”k+1( XG “’l)nk+1( ZG “’mk+1

i=1 i=1
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T -1, . T.-1._ T -1 1.
Y By 0y = 0% ,Q F +oX P OB (FLQ ok  +P oK)

o
<
o]
o
\

T -1 AT "1 "1 T -1 -1 A
0% 1% FitOX PG, (FLQ 0x ,+P, 0%

n
-1 -1 i i -1 -1 .
FOX P sz“’i) Mer1Fy 0%y
i=1

n
AT -1 -1 i i -1 _T. -1
TR P T Ekal)n'kﬂFka 0% 11
i=1
T -1_-1 3 i i -1 S i -1 1
A - - - 1 - - A
+6R P () G () G @1 Py 0%
i=1 i=1
where all terms of greater than second order have been neglected.

1

n
NP | -1 -1 .
Consider ( Z'kal)ﬂk__l_lPk égk. The wi are scalar quantities, so

i=1
n n

ifml ool s v od-l 1. |
(_zlewl)ﬂkHP k 0% ~ iXIGk”l&lPk 0%
i= =

But w = QI;IG X1 Denote the ith row of Ql;1 by g_lT Then

i, T,
W = 90K,
n n .
1 §-1 =1 _ -1 -1.. T
2 Gt Py 0% = (sznkﬂPk 0X9, 00K 1
i=1 i=1
Let
© i-1.-1. T
1=~ - A
B = sznk+1Pk 6x.q
i=1
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Then

T -1 -1 -1 .
oY Bk 6y, = 0% P T P ok

T T -1.-1
+[26 Pk rlk+1Fka +ox, Py 1-"k4~1 19541

T -1 -1 _T -1 __T-1 -1 T -1
+6% 119 Pl P Q% H 28 M B P ey B 10Ky A4 19)

The introduction of (A.19) into (A.17) gives

P, +1/zk) ko, Yexp - = {5>_ck (P ;lrLl:i lpl;l)agk?

exp '% {‘55;1 [Q;I - Q;IFkn;ilFI’f Q;I ) 2E1'f nl_(ilelel' El'f nl—cilEk] 0% 41
- 26 ‘TPklrlm_l[Fka +5E 551: +1 (A. 20)
The density p(gk +1/2'5k +1) is
Py /Ky T KRR - % {@yyy - l’i<-|-1)'1‘R1_<41-1(5k+1 “hyy)
Following the procedure used for p@o/)—{o ), this becomes

Py /Ky = Ky exP - {Gz 1Rk+1 —k+1}

1, T T _-1 i i
exp-g{ox (B Ry - 2 Tt 1 k4110 51
i=1

- 26 2, 1Rk+1ﬂk+16 §k+1 (A.21)
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Then, one sees that

/zk) z, ./ = kkkwkv exp -{Gz 6z
P&y /2 PG /K Ky Zret 1D k+1 Z+1

AT "'1 -1 "1 "1 A
+oR (P -P T P 6R

1, T _-1 T -1
exp - 5 (6% P 0%, - 20K P oK ] (A.22)

where
-1 Df T -1 -1 T -1
P Qk Qk F knk+1 ka 2B L1 P ™ B Mo B
1 m
T - i i
tH Pt T z Ttk 1
i=1

T T, -1_-1 T
55k+1 =[x P II1<+1(Fka *e E o) ¥ 0% 4R k+1Hk+1 k+1

Completing the square and integrating with respect to 6 Ek +1 gives

k k

WV 1 -
p@, /2 = X¥ Y oxp -1 (62 5z
@1 K, ko 2 0% 1Rer1% B
AT -1 "1 -1 -1 A AT "'1 A
oK (P - P TP 0% - 6-’5k+1pk+15’-‘k+1} (A +23)
where

-1/2
ey = 1@ 1By /

Division of (A.22) by (A. 23) yields p()_ck_*_l/_z_kﬂ).
K+l 1 . T-1 .
P4y /2 h = L AL W R WL W),

1 . (T-1 R
= k19 (80 "R P B ~ B! 4029
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APPENDIX B
MATHEMATICAL MODEL FOR THE SPACE NAVIGATION PROBLEM
The digital computer program utilized for the study presented in
Chapter 5 has been developed by the AC Electronics Division of General Motors
Corporation to investigate the general problem of guidance and navigation for
interplanetary space vehicles. In this appendix, the general equations that
are relevant to the problem of Chapter 5 shall be stated with a minimum of
accompanying discussion.
The motion of the spacecraft has been assumed to occur about a single
central body as described by (5.1), so analytical solutions of the equations
are possible. Thus, the position and velocity at any sampling time are
obtained from explicit analytical expressions rather than by numerical inte-
gration. These expressions are well-known [60].
For this model, it is possible to obtain explicit expressions for the state
transition matrix appearing in (5.6) [55].

Let

(B.1)

When the nominal is contained in the X-Y plane, the Qi have the form

81 Yy O 24 Yy O
27 %1 Yy 0| s % =% %5 O
0 0 & 0 0 &,
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81 Yo O b Y5 O
871 % Y O | 8 = %4 %5 O
0 0 8, 0 0 3

and let the eccentricity and mean

Let the eccentric anomaly at tk be Ek

angular rate be e and n. Define Sk and Ck as

8in Ek = Sk s CO8 Ek = Ck

Then, the elements of the submatrices are

8, = 5 L [Ci(l+e-e2) + Ck(2+e+2e2-e3)
(1-e)“(1-e C,)
2
-2~-5e+2 + 3EkSk]
2"
- «/ l1-e
b9 T (1-e)(1-e C) S, 1-Cp
3, . = Jl'ez [S, C, (1+e) + 8, (2-e) - 3E, C, ]
21 (l-e)z(l-e ¢y k k k k k
_ 1 2 2
8py = i-a(i-e G [C) + C (-1-2ete’) + 1]
A
33 (1-€)

_ _(1-e) -
Y4 T e c) S [-C (te) + 2]

2
_ l-e 2
§15 = d-om(-e Ck) [Ck(z-e) + ZCk(1+e) ~-4-e+ 3EkSk]
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24

25

36

41

42

51

52

63

44

45

" n(le C)

2
l-¢ 2
[l-Ck]

1

2
n(l-e Ck) [Ska(2+e-l-e ) + 2Sk - 3(1+e)Eka]

Sk(l—e)

n

n

(1'3)2(1-6 Ck)

2
3 [5Gy (e+e2-e3) +8, C, (-2-5e +2ez)

2 3
+ Sk(1+e+3e -e )+ 3Ek(Ck_e)]

3 2
[e Ck-2Ck+Ck+1_e]

3

(1-e)(1-e C)

&/l-e2

(1"9)2(1-e Ck)

3 2 2
3 [-Cyleve’) + C, (2+5e) - C, (1+e)

‘1—3e+e2+3E S

1)
ns )
£ 3 [ 012{- 2C, + 1+e_e4]
(1-e)(1-e Clg
-n Sk
(1-e)(1-e Ck)
l-e 3 [Ci(e+e2) - ZCli(l-!-e) + 2Ck +1-e]
(1-e Ck)
1l - e2 2 2 5
(1-e)(1-e C,)° [5,Ci(2e-€") - § C, (4+e) +8, (1+e)" +3E, (C, -e)]
k
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e
Sk\/l-e2

2

$ [eC. -2C +2-e]
54 (1-e C k)3 k k
¢, = i [—C3(2e+e2+e3) + CZ(4+5e+5e2)
55 3 k k

(1-e Ck)

2
-Ck(1+3e) -2-3e-e + 3(1+e)EkSk]

. (1-e) Ck
66 (1-e Ck)

The computation of the transition matrix is carried out in an in-plane
cartesian coordinate system and then transformed using a rotation matrix
into the basic nonrotating cartesian system. The evaluation of the two body
equations and the transition matrix equations provides the nominal and actual
trajectories and the linear model.

A horizon sensor has been assumed to be available to provide data for
navigation purposes. This instrument provides a measurement of the direction
of the line of sight to the center of a reference body relative to a nonrotating
reference frame and a measurement of the angle subtended by the reference
body. These angles are depicted in Figure B-1.

These measurements are described by the three angles, o, 6, and §.
The local vertical is defined by the elevation angle a and the azimuth angle 6.
The « is defined to be positive when the vehicle is below the X-Y plane and 6
is measured counterclockwise from the X axis.

X
@ = -sin ('§§-) : (B-2)
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Figure B-1. Geometry of Angular Measurements

6 = < (B-3)

where

2 2 2 1/2
R = -+ 4 XYY
I (Xl + Xz + ‘.3,

The subtended angle B is given by

B = sinl -2 (B-4)
where

r, = radius of reference body.

Both the first and second order partial derivatives are required for the

navigation procedure. The first order observation matrix I-I.k is, in general,

e B

H aX

=k
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More specifically, this can be written as

[ ea g 9¢ o o0 0 ]

X oX, oKX,

96 85 86
H = o 0 0 (B-5)
k 8X1 8X2 8X3

9B 9B 3B

o 0 0
oX_  oX, 8%,

— —

where the derivatives taken with respect to the velocity components of the state

vector (i.e., X4

zero submatrix as Hl(tk). It follows that

, X5, X6) are identically zero as indicated. Denote the non-

—

2 _21/2"]
-sin @ cos & -sin @ sin & —(Xl + XZ)
R R R2
2 2
-gin 6 cos8 O
H ¢t) = 0 (B-6)
1k X2 X1
-X1 tan 8 —X2 tan 8 -X3 tan 8
R2 R2 R2
Next, let
2 2
1 Df 9 o 2 Df 9 6 3 Df 3B
Ik 2 b Iy T 2 ; I = 2
F):4 axX oX
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where

X X
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There is no dependence upon velocity, so the partial derivatives relative to

velocity components are identically zero. Denote the upper left-hand (3x3)

submatrix by J‘l(tk) (i=1,2,3). Then,

-
1 1 1
I Y12 i3
1 1 1 1
et T [ a1 Ja o3
5 51 ;L
31 32 33
N B
. x*
- —=Bn? g -2
- 2 2.1/2 2
RX] +X,) R
X2 sin a cos 6 2 sinzé
S T AT
R X,
= 9326- (1 - 2sin® @)
R
X2 sin & cos & 2 sin2 5
= R [+ 3 |
R X,
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33

= (cos & -
2. _21/2
+
R + X))
= ﬂllz—é (l—Zsinza)
R
= 952-9 @ - 2 sin” @)
R
=8R8, sin® a)
R
1/2
~-2sina (X2+X2) /
_ 1 2
r3
2 2
Iin Y12
2 ] .2 2
Tt = | Ja1 Ja2
2 2
RETEREY
) 2X X,
L2, .22
X, +X,)
= —t — (1-25in%6)
x2 + %2
1 72
= =2 — (-2’ )
+
X, +X,
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3 3 3
J11 J12 J13

3 3 3 3
Jk(tk) J21 J22 J23

2 2
- tan 8 Xjtan g 2X,
e T3 T 3)
R r R
(o]
XX tanp o028 2
2 (T2 *t 3
R T R
0
X Xy tanf o2 N
2 g +t73)
R r R
(o]
X1X2 tan B , tan2[3 2
2 ot )
R r R
[o]

- tan 2
2 - 2 " 2
R r R
0o
X2X3 tan B (_2_+ tan2 )
R2 R2 ri
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3 tan 8 2
Jo, = ( + =)
31 2 2 g2
(o]
X
3 oXgtan B, tanzg
Igg = 2 (=5 *+ 7
R R r
(o]
2. 2 2
X 2xX
3 _ -tanp g tan A 3
I35 = 2 (- 2 - 3)
R ro R

Note that the J il(tk) are symmetric.

The preceding equations provide the complete model for the system. To
accomplish the Monte Carlo simulation, the actual trajectory of the spacecraft
is computed in addition to the nominal trajectory. The initial deviation of the
ensemble with mean zero and covariance matrix Mo (see (3.3) ) is selected
using a gaussian random number generator [61].

It is the state of the actual trajectory that is to be estimated. The
measurement data are computed from the nominal and actual trajectories. The
exact measurement values are corrupted by adding at each time numbers from
a gaussian random number generator assuming the ensemble has mean zero

and covariance matrix Rk
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APPENDIX C
GRAM-CHARLIER AND EDGEWORTH EXPANSIONS

The Gram-Charlier and Edgeworth [10, 23, 39] expansions have been
utilized in Chapter 6 to approximate the a posteriori density function p(xk/zk).
The purpose of this appendix is to discuss these expansions and to demonstrate
by example the nature of the approximation of various truncations to some
well-known density functions.
C.1 FORMAL DEVELOPMENT OF THE GRAM-CHARLIER EXPANSION

Consider a random variable € with a known density function and let x

be the normalized random variable

The m and 0 are the mean and standard deviation associated with £. Denote
the density function for x by £(x) and let ¥(x) represent the gaussian density
function with mean zero and unit variance.

Consider an expansion of f(x) having the form

c
fx) = coW(x) + clw'(x) + 2—,2¢"(x) +... (C.1)
&), . th
where §' ' (x) is the k= derivative of ¥ and the ck are the constants. The
derivatives W(k) are related to the Hermite polynomials according to [10]

2/2

2
ngx/2 (-1)“Hn(x)e°x (C.2)

&2

The Hermite polynomials satisfy the orthogonality condition

i —x2/2 _ [ n! form=n
2T J;me(x)Hn(x)e dx = { 0 form#n (C.3)
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Thus, (C.1) is an expansion in orthogonal polynomials and the ¢, can be
determined from the orthogonality condition (C.3). Multiply f(x) by Hk(x)

The Hermite polynomials can be established directly from (C.2). It is easily

seen that
=1

H (%)
Hl(x) = X
H2(x) = x2 -1

3
H3(x) =x -3

4
H4(x) =X -6x+3
H5(x) = x5 - 10x3 + 15x
H6(x) = x6 - 15x4 + 45x2 - 15

In general, the polynomials satisfy the recurrence relation
Hn +1(x) = an(x) - an_l(x) (C.5)

From the Hermite polynomials and (C.4), the coeffients are found. In

particular, one finds that

c =1
o

c1=0
02=0
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3
M
4
c, = — -3
4 04
M M
- _ 9 k)
cs--- 5-'l-10 3
(03 )
M Ll4
06=_6-157+30

.

The W, are the central moments associated with the random variable £.

The coefficients % have been designated by the name "quasi-moments"
by Stratonovich [57,58]. It is interesting to observe that c, and c, are
identically zero and that the first k quasi-moments are completely determined
by the first k central moments. The central moments have a more commonly
understood significance, and they are dealt with in the text rather than the Cp

The Edgeworth expansion is closely related to the Gram-Charlier, but
its derivation is somewhat more involved. It arose from considerations relat-

ing to random variables g which are given as the sum of n random variables

5

g =g 4Gt +E

According to the central limit theorem (with the suitable restrictions),

the € should be approximately gaussian when n is large. In this case, it is
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desirable that all terms of the same order in n be included when the expansion
is truncated. It was found that under this constraint, the expapsion for the

normalized variable x is

fx) = ¥(®)

L4

3! &)

+ 2o iP5l i

+ L q,(5)(,{),,__ c W)( )+280 3‘1,(9)

51 ° ¢

+.... (C.6)
where terms of the same order in n are stated on the same line. The details
regarding the derivation of (C.6) shall be omitted.

The Gram-Charlier and Edgeworth expansions can be written in terms
of the characteristic functions of f(x) and ¥(x). Let op(s) be the characteristic

function of f(x)

o6 = [ ¢ rmax

-0

The Fourier transform of the derivative of a gaussian density is given by

j eisx‘l'(k)(x)dx = (- 1s)ke s /2 . k=0,1,... (C.7)

s0 the Gram-Charlier expansion becomes
' 2 c c,
oE) = 6 /2[1+ 3 v (- 1s)3+ (is) +...] (C.8)
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C.2 APPROXIMATION OF DENSITIES USING THE EXPANSIONS

In this section we attempt to approximate densities that are distinctly
nongaussian in order to examine the effects of various truncations of the

expansions. First, consider a uniform distribution

“2:!1'1' a~hsE<€a+h
p(®) =

0 elsewhere

The moments of this distribution are known to be

m = a
02=h2/3
Hg = 0 = Hg
4
u4—h/5
_ .6
ue—h/7

We shall only consider truncations of the expansions that contain at most the

first six moments.

The density for the normalized variable is

2~/? - ﬁ £ x < A3
fx) =
0 elsewhere
This density is symmetric about the mean, so the Gram-Charlier and Edgeworth
expansions are identical through the sixth order moments. We shall consider

the following approximations to £(x).

Case 1: fx) = ¥
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Case 2: fx = ¥(x) +j41!- c 4\|1(4)(x)

case 3 19 = ¥+ e,V + 5 ot Ow

The data pertaining to these approximations are contained in Figure
(C-1). The important thing to observe about these plots is that Cases 2 and 3
exhibit negative values for the larger values of x. This is impossible for a
true density, so it suggests a possible source of difficulty associated with the
use of these approximations.

The second density to be considered is the xz density.

-———n /2; xn/ 2-':Le“x/2 forx> 0
p(®) 27" T@/2)
0 forx< 0

The moments ak (not the central moments) of this distribution are known to be

given by

o = E[gk] = N(n+2)....(n + 2k - 2)

The central moments are easily determined.

m =n
02 = 2n
u3 = 8n
2
u4 = 12n + 48n
2
us = 160n + 384n
_ 3 2
H6 = 120n + 2080n + 3840n
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The density for the associated normalized variable x is

1/2 _APnx+n
n/zzp - WExm e 2
f = (0/2) s
0 x<-(n/2)

This density is approximated for two values of n. Figure C-2 contains
the results for n = 1 and Figure C-3 depicts the approximations for n = 4.

These cases are plotted in each of these figures.

Case 1: f(x) ¥(x) + ¢(3) X)

¥ + 57 et + 5 0 1P

Case 2: £(x) y;

Case 3: f(x) ¥(x) + c \II(S)(x) + ¢(4)(x) + c ‘#( 6)

The latter two have been included because they illustrate the differences
between the approximations provided by the Gram-Charlier and by Edgeworth
expansions. Both of these cases include the fourth order moments, but no
moments of higher order. The Edgeworth expansion is seen to provide a

significantly better approximation in each case.
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APPENDIX D

DERIVATION OF NONGAUSSIAN A POSTERIORI DENSITY FUNCTION

In this appendix equations defining the moments of the most general
a posteriori density function considered in this investigation are derived.
Attention is restricted to scalar plant and measurement equations. The
techniques used in the derivation can be applied to more general density
functions and/or more general system equations (including multidimensional
systems). Increased generality leads only to algebraic difficulties, not con-
ceptual difficulties.

Suppose that the plant and measurement equations are described by

2
X = B 1 T 81 T Vi (D.1)

Z = hk"k”k"i*"k (D.2)

where the additive noise {w,,} and {vl'} are white, gaussian sequences. The

initial state xo is also gaussian. The system (D. 1) and (D. 2) can be considered

to represent the second-order Taylor series expansion of some more general
nonlinear system. The a posteriori density shall be approximated at each

sampling time by
k) 1 .2 1 1
p(xk/z =kkexp--2-§k[1+ cH(c,k)+ ¢ H,( %()

10 2
HG(Ck)] D.3)

where

205



°3 7" 3
Py
V
k
¢y =74 3
Py

and
| H(C)=€3-3Q
3%k 'k k

o4, 2
H4(C.k) —Qk-sgk+3

_ .6 4 2 _
HG(Ck) —Qk—15€k+45§k 1

The ik is the mean value and pf:, uk, vk are the second, third, and
fourth central moments of p(xk/ zk). Relations defining the moments are
derived below. In the derivation, use is made of general relations between
the moments and central moments of a distribution and also of the special
properties of the moments of a gaussian distribution. Relationships of this
nature are summarized in Appendix E.

D; 1 INITIAL SAMPLING TIME

Since the X, is assumed to be gaussian and since a measurement zo is
assumed to be available, the initial sampling time is a special case of the
more general results presented in Section D.3. According to (2. 15)

p(z /% )P(X )

[pz /% ypix yax

p(x/z) =
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From (D.2), it is true that

(zo - hox0 - eoxc2>)2
p(zo/xo) = kv exp - o 3

r
]

2
-k e 1 (zo_hoxo)
v P 2 2
r
o

(-2e z x2+2h e x3+e2x4)
0oo0o 000 00

2
r
o

1
exp -5

It is necessary to approximate the second exponential.

2
Bx ) Df 0% x2’ _ hoeo x3 _i_o_ x4
[} 2 o 2 s} 2 o0
r r 2r
o o o
and let
b 1=)f eozo
2 2
r
o
b Qf _ hoeo
3 2
T
o
e2
Df 0
b4 = -
2r

Let

(D. 4)

Before dealing further with the second factor, let us form p(xo/zo) . Let

w Df—=
o Jpz /x )p(x )dx
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Then,

15,72 4 zo-hoxo 2

= It - 0 o = e

p(xo/zo) kokvkx exp - 5 (--——0 ) exp ) ( rz ) exp B(xo)
’ )

Combining the two gaussian terms and completing the square, one gets

1 az zcz) gcz) 1 xo - éo 2
= ! - — g —— L —— ——
p(xo/zo) kokvkxexp 2( 2+ 2 2)exp 2( - ) exp B(xo)
m r i o
o o
where
2
1P, a1
2 2 2
TT T m
o) o o
2 hozo a
55’0 B TTo( 2 + 2)
r m
0 o

The éo and ﬂi would be the conditional mean and variance if the measurements
were linear. The factor exp B(xo) then serves as a correction to the linear
results.

Now, rewrite B(xo) in terms of the variable éo. That is, let

2 3 4 z ~ 2
bzxo + b3xo + b4x0 - Bo + Bl(xo - go) + le(xo - 50)

A 3 4
+B31(xo - go) +ﬁ41(xo - go)

The values of the [3i that satisfy the equality are easily determined to be

N

B

a2 ~3 24
0 bzgo + b3§o * b4go

a A9 a3
Bl 2b2§0 + 3b3§0 + 4b4§0
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A A2
b2 + 3b3§o + 6b 4€o

b3 + 4b4§°

The constant Bo can be considered separately. Define Bl(no) as

where

Now, let us approximate exp Bl(no) by a power series. Then,

Terms of greater than second order shall be neglected. ILet

where

Df 2 3
Bl('ﬂo) = Bl'ﬂo + 621710 + 331110 +B

exp B (n) = 1+B,(n) +5; [B,() +o[Bo(n )]

Df
B,(n) =

5 (B, ()1
= 322n3+332n§+ﬁ42n§+35n§+l36ng+37n2+ﬁ
By, B2
Pz o BiBa1
P o (‘321"'2‘61331)/2
Bs = B1Pa17ByPay

n
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Thus,

%2

0
5)
-

2
z
2.

2
o o

1
= k! -= +
px /2 ) k'k k_ exp 2(

OBN |mN
L}

3

1 02
expp_exp -5 i) [1+B () +By( )]

2, 2 2,2 22,2 .
The constant [kvkx exp - 1/2 (a"/ m_+ zo/ro - éo/rro)exp BO] will be cancelled

by the corresponding term in fp(zo/xo)p(xo)dxo. Define the constant k0 to be

1 a2+zi éi
= 1 e —— —_— ——
k) =kkk exp-5(75 H-p)exph,
m r 1T
(o] o (o]
1 1 ' n

1 02 -1
Jarn Wamn Jexp - ) 1148, (4B, () 147,

Note the change of variable for the integration. Thus

1 1
o /AT 1+E[B]+E[B

2]

and

= 1 1 1 "o, 2
px,/2) =T E[B,] +E[B,] [Jz?no eXp-ng—o) [1+B; (M) +By( )1 ]

(D. 6)
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The expected value is obviously taken relative to the gaussian density

1/J2‘rr‘no exp - 1/2(n0/n0)2.

To cause p(xo/ zo) to assume the form prescribed by (D.3), determine

the moments E [n:)/zo]

A i A i
Elx, - §) /2] = [ -5)px /2 )dx_

= 1+E(B1)+E(B)[ zim ﬁ’b 1(“)
n,
+nB2(n)]exp z(r, ) dn]
i E[n ]+ E[n, Bl(n)]+E[n B,(m)1]
E[n,/z, = L+E[B,] +E[B,] ®.7)

The expectations indicated in (D.7) are easily determined.
B(B)] = BI87,+ By + By, + Bygy)

= lenz + 3B 4
E[B,] = E[‘Bzz”cz) * Bszni * B42”§ + Bsni * Benﬁ * B7“Z + Bs“i]

=B 22”§ + 3342”21» * 56 sng * 7Bs"§

This follows from the fact [10] that for a gaussian variable T with

mean zero and standard derivation TT0

0’ i=1,3’5”.'

i
E[n] = i
(1-1) TTO ’ i=2’4’6,00n
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i i . -
The E['r\OB 1(no)] and E[noBz(no)] are determined in the same manner.
The central moments can be determined directly from the E[n;/zo] .

For example,
E[no/zol = E[(x, - éo)/zo] = E[xo/zo] - éo

By definition,

80

k=€ +E[n/z] (D.8)

Thus, the E(no/ zo) provides a correction to the conditional mean obtained from
the linear density.

The variance is determined by considering the second moment.

Eln/z ] = Bl -§)%/2 ]

Il

E{[x, - ﬁo) & - §o)lz/zo}

) 2 A ~ A ~ ~
E[(xo - xo) /zo] + 212:[(x0 - xo)/zo] (xo - go) + (x0 - go)z

But
E - A = A - ~ = .
[x, xo/zo] X -X 0

and

x0 - g0 B E[nO/ZO]
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S0

2 Df
Po

A 2
E[(x0 - xo) /zo]

2 2
= E[n /2 ] -E [ /z ] . 9)
The third and fourth central moments are found in the same manner and are

given by

=
I

Eltx, - %)°/z,)

3
E(n/2,] - 3E[n /2 lp: - E°[1/z] (©. 10)

v = E[x -%)"/z ]

4 2.2 4
E[n/z 1-4u E[n /z ]1-6p E"[n /z 1-E7[n /z ] (D.11)
This completes the derivation of the moments for the first sampling time.

D.2 THE PREDICTION DENSITY p(xk/ zk-l)

The density p(xk/zk-l) , according to (2. 13), is given in general by

p(xk/zk_l) = Ip(xk_l/zk_l)p(xk/rﬁ(__l)dxk_l

It is necessary to proceed carefully in determining this density. In particular,
if one attempts to establish p(xk/zk-l) directly from the formula, it becomes
apparent that one is led to a hopeless morass of algebraic manipulation. On
the other hand, it has been pointed out that the object of the approximation
procedure is to determine the moments of the distribution. That is, it is

desired to determine

E[xli(/zk-ll = J’:{l{p(xk/zk'l)dxk (D.12)
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This can be written as

E[xli{/zk'll = fxli{{J'p(xk_l/zk_l)p(xk/xk_l)drﬁ{_l}dxk
Iterating the integrals, this becomes
E[x:c/ =7 =] plx_y/ 2 Xf{p(xk/ LU L

The innermost integration can be easily accomplished because of the assump-

tions on the plant. Consider the mean value.

T gkxlz(-l) 2

UG-1

Bl /) = Koo -y g,

It follows immediately that

Elx/% ] = f%q 7 gkxlzc-l

Thus,
E[xk/zkd] B J‘ (thk-l * gkxi-l)p(xk—l/ Zk--l)dxk-l

-1
From the definition of p(xk_l/zk ), one obtains immediately

k-1, . . 2 .2
Epg/z 1= fR 1+ g0y YRy

Df .
= X (D. 13)

Continue in the same manner to determine the higher order moments. Thus,

2 2 2 2
Ex /% ;] = q_;+Ex 1 +gX )

and so

2

E [Xk/zk-1

2 2 - _ -
1= qk-1+f12<E [xk-l/zk 1]"'2fkng[x1:i-1/Zk ]]+g12<E[x§-1/zk g
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By definition, one sees that

2 k-1, _ 2 . .2
Elx /2 1 =p_;+%
3 k-1 _ . 2 .3
Elx /2 1 =W _ +3R _p R
4 k-1, _ . 2 2 .4
Bl /271 = v +4R W F6R o R

The conditional variance is given by

2 _ 2, k-1 .2
Pe/k-1 - EIR/ZT-R
After some manipulation, this is found to be

2 2 . 22
Pr/k-1 ~ %1t Gt 28 X)) Py

. 2 4
2 (B + 28 X Mt Oy T P)

The third order moment is found in a similar manner.

3 2 L2 2 3
B/ %eqd = 39 68X 1 Y85 T EX T EX D)

SO

o om
e
N
|

k- 3 k-
+ 3fkg12{E[x15{_1/z 1] +ng[xﬁ_l/z 1]

= 3qf:—1ik/k-1 + {E[xﬁ-l/ 27 + :”ing [xﬁ-l/ 2"

(D. 14)

_1]

(D.15)

., k-
The first four moments E [xli{'_l/z 1] (i =1,2,3,4) are known from the

determination of p(xk_l/zk—l) and are used in the coefficients of the Edgeworth

expansion. At the time that these moments are established, it would also be

possible to determine as many of the higher order moments that are required

to define p(xk/zk—l). Alternatively, one could view the truncation of the
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Edgeworth expansion as implicitly requiring that the higher order moments

be the same as the basic gaussian density. Then,

Mg = M, =0
8

Mg = %Pq
8

Mg = TP

This assumption will be used here. Then,

5 k“l — A~ '\2 A3 2 »\5
B{x, /2" 71 = 5% vy o 10X W g H10% P 1 PR

]

6 , k-1 6 A2 .3
E[x, /2" 71 = 8p_; +15% v o+ 205 4

+ 155 + 58
X-1Pk-1 " %k-1

7 k-l A 6 63 A4
E[x (/2" 71 = 35X 1P 4+ 355 (Meq TR Mk

52 A
21X Peo1 T X

8 , k-1 8 2 6 4 5
E[x _,/z 1 = Tp_,+140x p ,+70X v, +56% M
6 2 .8
+ 28X 1Pr-1t %1

The third central moment is related to the E [x.i/ zk—l] according to

3, k-1 .. 2 .3
M1 = E®/Z0 ) = 3K Pt T Mk/k-1

The analytic expression for the uk /k-1 shall be derived for future reference.

It is not necessary since (D.15), (D.16) and the relations for the moments

E[x,

k-1 .
_l/z ] can be used to determine My /k-1°
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In particular, after considerable manipulation, one finds
= P +3fg (2R £y -pe )
Me/i-1 = O 3B M1t Y T P

2 . 4 . 2 2
+ 3 g (X 1P 1 7M1 Vk-1 ” F ¥ 1M1~ 2Py 1M1

3 6 4 A2 2 - 2
+ - -
+ gk(7pk'-1 33pk_1xk-1 3pk-]_\)k-]_ 12xk-lpk—1pk-1

22 ~3
- 3Vk-1xk- 1 12xk_1 + “k- 1) (D.17)

The fourth order moment is determined from

Elx/x ] = 3q_ +66Ex  +gx e +@x  +gx )t
Thus,
/2 =3q,_ +6q (LB /2 +o g BC /2 +elER /2T

+ f]tE (’ﬁt-/ 2 +4£13ng ("15<-1/ 27) "'mlz(glz{E (’{-1/ 2)

k-1 k-
+af 2B 2T+ B /2T (©. 18)
The fourth central moment is determined from E(x;t/zk—l)
4, k-1 o o2 2 . '
Vie/k-1 T E®SE D) R e e ker ek Prie1 Xeker @019

Equations (D. 18) and (D.19) serve to define \)k /k-1'
This completes the derivation of p(xk/ zk—l). Recall that the only approxi-
mation is in the number of terms retained in the expansion and in the moments

of greater than fourth order.
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D.3 THE GENERAL RELATION FOR p(xk/zk)

The general relations for the moments of p(xk/ zk) are derived in a

k-1
manner similar to that utilized in Section D.1. The density p(xk/z ) has the

form given by (D.3) rather than the gaussian p(xo) , So the derivation is some-

what more complicated algebraically.

According to (IV), the p(xk/zk) is described by

p(x, / zk_l)p(zk/xk)

p(xk/zk) = 1
p(z /2" )
Let
, Df 1
ke = k-1
p(z, /2" )
Then 2
Z, - -e
K I S
Px/2) = KK g gk exp - kl;
k
1 1
[1+73703H36€, 1) + 2110y Cp ped)
where
_ xk-ﬁk[k-l
gk/k"l - ( p )
k/k-1

This can be rewritten as
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2 1. 2
) exp - 2((;1{/1{"1)

10

2
+ 51 c3H6(Ck/k_1) (D. 20)



) 2 g2
g
P, /29 = Kk ok exp - -2-(—Lx; +—‘§-—-‘§) exp B,
Pe/-1 Tk Tk
L%
exo - 1 LR B,(n) + By(n)]
k
[1+—c H (nk)+—c H,(n)+3 +—c H (n)] (. 21)
where
2
1%, 1
72 B rz 2
kK 'k Pr/k-1
A 2 M ikjk-l
%k T (T2 * 2 )
Kk Px/k-1

The Bl(nk) and B Z(nlg are defined in the preceding section with the trivial

change of subscript. The Hermite polynomials can be rewritten in terms of

the variable
= - g
First, the Hermite polynomials can be written as
H = + +8 2 +8 3
3k /-1 T %ot 8%k T BN T Bk

2 3 4
do+d1)ﬁ<+d2xk+d3xk+d4xk

H,(C, /k-1

H_ (C ) = e +ex +e 2 e xS e x +e 5 be xC
6'°k/k~1 o Tk T Mk Tk T %k T %%k T %%k
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where

and

+3

o4 52
Df Mk/k-1 _, Th/k-1
2

4
Pe/k-1 Pr/x-1

IIE

3 A
4 (xlz/k-l 3 xl;/k-l)

Pe/k-1 Pr/k-1

2
Xk /k-1 1

4 T2 )
Pr/k-1 Pk/k-1

Ilg

6(
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and finally,

~6 54 22
e Dt }ﬁ;/k'l - 15 x';/k"l +45 -—Lx'; L _15
Pe/k-1 Pr/k-1 Pr/k-1
s e, ?

Pe/k-1 Prik-1 Prjk-1

o4 .2
e, 2 15()";/1"1-6)(“;/1"%3'21 )

Pek-1 Pr/x-1 Pr/k-1

A3 A
Df Ne/k-1 . k-1
e, = -20(— -3 )

Pr/k-1 Py k-1

A2
Df “k/k-1 1
e = 15( 6 i) )

Pe/k-1 Prsk-1

Py k-1

These polynomials are to be rewritten as

2 3
Hp(m) = ¥+ ¥ m +¥,n +¥0

_ 2, . 3 4
H) =6 +om *o,n +o,n +6,n

2 3 4 5 6
HeM) = ot et oMt esMtresMtesMt ek
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The coefficients that satisfy the equality are found to be

I = 85

5 =d+d’§+d“2+dA2+df§4
0 o 1k 2gk '3§k 4’k
5. = d +2d.f +3dE24+44 €

1 1 27k 3o T 44,5

A Az
52 = d2 + 3d3§k+ 6d4§k

A

by = dg+4d,5

6, =d

4 4
_ -~ Az A3 A4 ,,5 56
eo = eo + elgk + ezgk + e3§k + e4€k + e5§k + e6§k
. 22 23 o4 . 25
= + + + +
€ e 2e2§k 3e352k 4e4§k + 5e5§k 6e6§k
= e +3e€ +6e62+10e A3+15e§4
‘2 2" 3%k T "4k 5% 6°k

A A

22 3
= +
53 e3 + 4e4:§k + 10e5§k 20e6§k

A A2
€, = e4+ 565§k+ 15e6§k

e5 = e5-l-6e6€k
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Let

. 2 g2
g
Df by S O Y
k) = KKK -1 8P -5 ( 2 + 2” 2) €XP B
Pek-1 Tk Tk

1

1 1 k2
= fi??ﬂo [Jz?nofexp—z(;l(-) [1+B, +B,]

1 1
[1+;c3H3+Z; 4H4+-§;c H ]dT\k]

Then,
p(xk/zk) - 1 - 1 10
E{[1+B1+B ][1+'—c3H3+Zc4H4+6—, ]}
1 k.2
{- J j’exp 2(—k) [1+B, +B,]
1 1 1
[1+57¢Hy+ e 4H4+6—? 2y H1) (D. 22)

The moments E [n:{/zk] are computed in a straightforward manner. The
products of the polynomial terms appearing in (D. 22) are required. These

products are stated below for reference.

2 3
BHy = 88 M+ (B By 818 )N + B Bgy + 8.8y + 88T

4 5

T (8Pt 8Py ¥ 8aPyy BB F (B8 F8Bgy + 8B
6 7

+ (88,1 * 8383 * B3P0

2 3
B)H, = dBn +dpBy +dBn +@pgy +d)Byy +d BN
4 | 5
A fyy +dyBgy FdoByy T BN +d)By +doByy By, +d BT

6 7 8
+ (B FdgBgy +d By )Ty (g8, +d BN YA BTy
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16

B_H

2 3
+ +
Bie Mt B8 Bg1 )M + G182+ Ps181 P31k
4 5
+ + +
+(BegtBy o tBg e B 18 )T T B8Py 83 HPg 8 Pk
6 7
+ + + + +
+(B e +By e, By e B 18T (B eg By 85 By e B ey

8 9 10
+ +
+(By106Pa185 B0t By e TR T Byi%e Mk

2 3 4
8 BooM T (818008 Baod Ty + (8B yo+8:1Pgo+ 85000y
5
(8 B t8.By0t8oPg0 8B )\ + (8 Bt8.BrFSoB o t85P50) ”ﬁ
+ (Soﬁ7+3136+82ﬂ5+53542)7‘11+(soﬁs +Slﬁ7+8236+5335)“18<

9 10 11
(8B +8,,+8 BTy (8B 488y + 8Ty

d.p 22“13+ (dBgp*d,P 22){ *APyptd gy tdyp 22”‘&

td Pyt ByptdyPagtdshay) ":+ (A Bgtd Bt dyB otdgfastd,p 22){
Tt Brd pordaf atd,Fay) T‘17<+ (dBgtd B tdBgtdafytd,p 42’”?:
+(d,Bgtd, B rdBrd,p 5)”13*' (@ pg+daf B 6)71110

11 12
(@ Bg+d Bomy +d BTy

eP 22“12<+ ©1Pgotef 32)n13<+ (€ PygterPastep 22)";i

T fsterP it eoPasteP 22)Thi+ (€ BgteiPstefptesfsste f 22)”12
tefqatePetesfstef oo Part ot 22)n17<
tlefgtePrtePetedPste P gt esPantoP 22)”12
teBgtegfrtegBete Bitesf ot eeP 32){

e fgtesfrte PetesfstegP 42)7‘;0+ (egPgte Prtefoteqs 5)“111

12 13 14
e BatesfrreBany +legBgtegf)n, +egfgmy
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ik
After the moments E[T\k/z ] i=1,2,3,4) have been computed, the central
moments required for the Edgeworth expansion are computed from (D.8)

through (D. 11) with the obvious change of subscript. This completes the

derivation.
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APPENDIX E

MOMENTS OF A DISTRIBUTION

The relation between the moments and the central moments are presented

in this appendix to provide a convenient reference. The central moments

through the twentieth are included.

5.1 MOMENTS OF A GENERAL DISTRIBUTION

Consider a random variable € with finite moments of all order. The

central moments are related to the moments according to the following

schedule.
E[g)
E[E - )7
E[E - 2)°]
E[E - a)]
E[E-2)]

E[E - a)°)

E[E-2) ]

lIE

] )] ] Ilg "

llg

ng
n

IIE

4
E[§4] - 4au3 - 6a202 - a4
Mg
E[§5] - 5au4 - 1032u3 - 10a3(72 - a5
Mg
E[§6] - 6aMd_ ~ 15a2p. - 20a3u - 15:14(72 - a6

5 4 3
7 2 3 4 52 7

E[E ] -7au6—21a u5-35a p.4-35a u3—21a0’ -a
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E[E - 2)°]

E[CE - )]

E[(E -2) "]

E[E -a) ]

E[E - a) 2]

E[E - 2)™)

E[E - a)'"]

It

g
-

Hg

2 3 4
E[gs] - Sa}.l7 -28a H_ -56a u_ - T0a u

6 5 4
-56a5H3 - 2&5&160'2 - a8
H9
E[5°] - 9au, - 36a2u7 - 84a3u6 - 12634u5
- 126a5u 4" 84a6u3 - 363,702 - a9
10
E[fgm] - 10aH, - 45a2p.8 - 120a3u7 - 210:,14;16
- 252a5u5 - 210a6L.l4 - 120a7}.13 - 45a802 - al0
M1
E[gll] - llap.lo - 55a2}.19 - 165&13‘.18 - 330.'114u7 - 462a5u
- 462a6u5 - 330a7u4 - 165a8u5 - 55a902 - a11
12
E[§12] - 12L111a - 66u10a2 - 220L19a3 - 495u8a4
- 792|~l7a5 - 924u6a6 - 792;15a7 - 495u4a8
- 220}.13a9 - 66}.12a10 - 312
H13
E[§13] - 13u12a - 78}.11].::12 - 286L110a3 - 715p.9a4
- 1287u8a5 - 1716u7a6 - 1716u6a7 - 1287u5a8
- 715;44:119 - 286u3a10 - 78u2a11 - a13
L‘l14
E[§14] - 14u13a - 91L112a2 - 364L11133 - 1001L1.10€=L4

- 2002 a5 - 3003L1836 - 3432y, a7 - 3003\..!.62:18

9
1 11
- 2002u5a9 - 10014,3 0_ 364u,a - 91ua

7

228

12

-a

6

14



E[E - a)15] Df

E[E-a% X

H15
15 2 3 4
E[§ ] - 161, ,a - 1054 ;2" - 4550, ,a° - 1365y, .
5 6 7 8
- 3008, a” - 500512 - 64352 - 64352
- 5oosusa9 - 3003u5a10 - 1365u 4a11 - 455u3a12
- 1054 2 - a1°
2
H16
16 2 3 4
E[§] - 16u;,a - 1200 2" - 560y, ;2" - 18200 ,a
- 43684 a° - 8008, a° - 11440 a' - 128704 a°
H11 H10 Hg 8
- 11440u7a9 - eoosu6a1° - 4368u5a11 - 1820u4a12
- 5sou3a13 - 1200%a1% - 216
17
17 2 3 4
E[E] - 170 ca - 1364 2" - 680p, 2" - 2380y .2
61884, _a° - 123761, .a° - 19448, a' - 243104 a°
122 M1 102 Hy
~24310u a° - 1944820 - 123760 _a'! - 6188u_a’?
o ) (o] [}
- 2380u4a13 - 680u3a14 - 13602222 - 17
T

E[§18] - 18LJ~1 a - 153u a2 - 816;.1.15a3 - 30601 a.4

7 16

5 6 7
-8 568“1 3a -18 564u1 od - 318 24L111a
0

8 9 1
- 43758Llloa - 48620u9a - 43758u8a
2 13

14

- 31824u7a11 - 18564}.1631 - 8568u5a
-30601L 4a14 - 816pl3a15 - 1530’2:«116 - a18
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D
E[E-2 17 H,

= E[E)-194 a- 171;417a2 - 9691 6513 - 38764, a°

19 1 15
7

5 6
-11628ul4a - 27132u13a - 50388}.112a
10

8 9
- 75582[41 a - 92378u10a - 92378p.ga
11 12
- 75582L18a - 50388u7a - 27132u63

14
- 11628%8. - 38764 a15 - 9694, a

4 3
- 1710'23.17 - a19

1
13

16

20. Df
E[(€ - a) = My
= E[gzo] - 201, a - 190u18a2 - 1140u17a3 - 48454 at

19 16

_ 155044 a° - 38760u. .2° - 775200
18 1

7

132

- 1259701, _a° - 1679601 a° - 1847564, a
12 11 10

- 1679601.‘19a1:l - 125970}.1.89.12 - 77520[»17313

- 38760“63,14 - 15504L-l5a15 - 4845u4a16

- 1140143al7 - 1900’2a18 - a20

4
10

E.2 MOMENTS OF A GAUSSIAN DISTRIBUTION
The central moments of a gaussian distribution have the properties that

ui =0, i=3,5,7,9,....

d-10", 1=4,6,8,...

Hy
Thus, the relations of the preceding section can be simplified for this distribu-
tion. These relations shall be stated explicitly below because they are of

considerable importance in the approximations presented elsewhere in this

document.
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Let € be a gaussian random variable with mean value a and variance 02.

E[E]
E[g’]
E[g’]
]
E[Z’]
E[5]
E[E]
E[g)
E[’)
E[glol

Elglll
E[g2)
E[§13]
E[§14]

E[§15]

E[gIG]

a

0'2+a2

2
a(3o‘2 +a)

30'4 + 6:512(72 + a4

a(1504 + 10(72a2 + a4)

50‘6 + 450‘49.2 + 1502a4 + a6

a(35o‘6 + 1050‘4a2 + 210'23.4 + a6)

708 + 14006a2 + 210(749.4 + 28(72a6 + a8

a(63¢.‘r8 + 42006a2 + 37804"a4 + 360.')‘2216 + a8)

90'10 + 315()'88,2 + 1050('1'69.4 + 630(74a6 + 450’2a8 + a10

a(99010 + 11550'832 + 23100’6a4 + 990043,6 + 550'28.8 + alo)

11(712 + 5940‘10a2 + 34650834 + 46200'63,6 + 14850’4a8

+ 660’2&10 + a12

a(1430'12 + 25740‘10a2 + 90090’8a4 + 85800‘636 + 21450’4a8

1 1
+ 7802a 0 +a 2)

13cr14 + 1001012a2 + 9009(710a4 + 21021(78a6 + 150150'6a8

+ 3003048.10 + 910'2a12 + a14

4
a(1950‘14 + 50050’12a2 + 270270’10a + 450450‘8a6

6 8 4 10 2 12 14
+a

+ 250250 a +40950 a  + 1050 a )

15016 + 15600’14a2 + 200200‘12a4 + 720720’10116

+ 90090(78118 + 400400’6a10 + 54600‘4a12

+ 1200'28,14 + a16
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4
E [5171 = a(2550'16 + 88400™%a% + 680680" 2" + 1750320 %a®

+ 1701700’8a8 + 61880(763,10 + 71400’4%31.12

1
+ 1360‘2a14 +a 6)

14 4 1
E [518] = 170’18 + 22950'16a2 + 397800 4a + 2042040 2a

+ 3938220’10a8 + 30630608a10 + 928200’6:&112

2 16 18
+ 91800‘43,14 + 1530 a +a

14
E[§191 = a(323<r18 + 1453501032 + 1511640™%a* + 554268071 2%°

+ 8314020’10a8 + 5290740‘8a10 + 135660(76a12

+ 11628072 % + 1710728 + 218

2

6

20

4 46
Eg®] = 190”0 + 32300 s 6

1 1
+ 726750 a + 5038800 a

+ 13856700123.8 + 16628040’108.10 + 8817900’83.12

+ 1938000°a % + 145350%a 1% + 1900728 + 20
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